1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
//! Draw random samples from a chosen probability distribution.

// std
use std::f32::consts::PI;
use std::sync::Arc;
// pbrt
use crate::core::geometry::{Point2f, Vector2f, Vector3f, XYEnum};
use crate::core::pbrt::clamp_t;
use crate::core::pbrt::Float;
use crate::core::pbrt::{INV_2_PI, INV_4_PI, INV_PI, PI_OVER_2, PI_OVER_4};
use crate::core::rng::Rng;
use crate::core::rng::FLOAT_ONE_MINUS_EPSILON;

// see sampling.h

#[derive(Debug, Default, Clone)]
pub struct Distribution1D {
    pub func: Vec<Float>,
    pub cdf: Vec<Float>,
    pub func_int: Float,
}

impl Distribution1D {
    pub fn new(f: Vec<Float>) -> Self {
        let n: usize = f.len();
        // compute integral of step function at $x_i$
        let mut cdf: Vec<Float> = Vec::with_capacity(n + 1);
        cdf.push(0.0 as Float);
        for i in 1..=n {
            let previous: Float = cdf[i - 1];
            cdf.push(previous + f[i - 1] / n as Float);
        }
        // transform step function integral into CDF
        let func_int: Float = cdf[n];
        if func_int == 0.0 as Float {
            for (i, item) in cdf.iter_mut().enumerate().skip(1).take(n) {
                *item = i as Float / n as Float;
            }
        } else {
            for item in cdf.iter_mut().skip(1).take(n) {
                *item /= func_int;
            }
        }
        Distribution1D {
            func: f,
            cdf,
            func_int,
        }
    }
    pub fn count(&self) -> usize {
        self.func.len()
    }
    pub fn sample_continuous(
        &self,
        u: Float,
        pdf: Option<&mut Float>,
        off: Option<&mut usize>,
    ) -> Float {
        // find surrounding CDF segments and _offset_
        // int offset = find_interval((int)cdf.size(),
        //                           [&](int index) { return cdf[index] <= u; });

        // see pbrt.h (int FindInterval(int size, const Predicate &pred) {...})
        let mut first: usize = 0;
        let mut len: usize = self.cdf.len();
        while len > 0 as usize {
            let half: usize = len >> 1;
            let middle: usize = first + half;
            // bisect range based on value of _pred_ at _middle_
            if self.cdf[middle] <= u {
                first = middle + 1;
                len -= half + 1;
            } else {
                len = half;
            }
        }
        let offset: usize = clamp_t(
            first as isize - 1_isize,
            0 as isize,
            self.cdf.len() as isize - 2_isize,
        ) as usize;
        if let Some(off_ref) = off {
            *off_ref = offset;
        }
        // compute offset along CDF segment
        let mut du: Float = u - self.cdf[offset];
        if (self.cdf[offset + 1] - self.cdf[offset]) > 0.0 as Float {
            assert!(self.cdf[offset + 1] > self.cdf[offset]);
            du /= self.cdf[offset + 1] - self.cdf[offset];
        }
        assert!(!du.is_nan());
        // compute PDF for sampled offset
        if let Some(value) = pdf {
            if self.func_int > 0.0 as Float {
                *value = self.func[offset] / self.func_int;
            } else {
                *value = 0.0;
            }
        }
        // return $x\in{}[0,1)$ corresponding to sample
        (offset as Float + du) / self.count() as Float
    }
    pub fn sample_discrete(
        &self,
        u: Float,
        pdf: Option<&mut Float>, /* TODO: Float *uRemapped = nullptr */
    ) -> usize {
        // find surrounding CDF segments and _offset_
        // let offset: usize = find_interval(cdf.size(),
        //                           [&](int index) { return cdf[index] <= u; });

        // see pbrt.h (int FindInterval(int size, const Predicate &pred) {...})
        let mut first: usize = 0;
        let mut len: usize = self.cdf.len();
        while len > 0 as usize {
            let half: usize = len >> 1;
            let middle: usize = first + half;
            // bisect range based on value of _pred_ at _middle_
            if self.cdf[middle] <= u {
                first = middle + 1;
                len -= half + 1;
            } else {
                len = half;
            }
        }
        let offset: usize = clamp_t(
            first as isize - 1_isize,
            0 as isize,
            self.cdf.len() as isize - 2_isize,
        ) as usize;
        if let Some(value) = pdf {
            if self.func_int > 0.0 as Float {
                *value = self.func[offset] / (self.func_int * self.func.len() as Float);
            } else {
                *value = 0.0;
            }
        }
        // TODO: if (uRemapped)
        //     *uRemapped = (u - cdf[offset]) / (cdf[offset + 1] - cdf[offset]);
        // if (uRemapped) CHECK(*uRemapped >= 0.f && *uRemapped <= 1.f);
        offset
    }
    pub fn discrete_pdf(&self, index: usize) -> Float {
        assert!(index < self.func.len());
        self.func[index] / (self.func_int * self.func.len() as Float)
    }
}

#[derive(Debug, Default, Clone)]
pub struct Distribution2D {
    pub p_conditional_v: Vec<Arc<Distribution1D>>,
    pub p_marginal: Arc<Distribution1D>,
}

impl Distribution2D {
    pub fn new(func: Vec<Float>, nu: i32, nv: i32) -> Self {
        let mut p_conditional_v: Vec<Arc<Distribution1D>> = Vec::with_capacity(nv as usize);
        for v in 0..nv {
            // compute conditional sampling distribution for $\tilde{v}$
            let f: Vec<Float> = func[(v * nu) as usize..((v + 1) * nu) as usize].to_vec();
            p_conditional_v.push(Arc::new(Distribution1D::new(f)));
        }
        // compute marginal sampling distribution $p[\tilde{v}]$
        let mut marginal_func: Vec<Float> = Vec::with_capacity(nv as usize);
        for v in 0..nv {
            marginal_func.push(p_conditional_v[v as usize].func_int);
        }
        let p_marginal: Arc<Distribution1D> = Arc::new(Distribution1D::new(marginal_func));
        Distribution2D {
            p_conditional_v,
            p_marginal,
        }
    }
    pub fn sample_continuous(&self, u: Point2f, pdf: &mut Float) -> Point2f {
        let mut pdfs: [Float; 2] = [0.0 as Float; 2];
        let mut v: usize = 0_usize;
        let d1: Float =
            self.p_marginal
                .sample_continuous(u[XYEnum::Y], Some(&mut (pdfs[1])), Some(&mut v));
        let d0: Float =
            self.p_conditional_v[v].sample_continuous(u[XYEnum::X], Some(&mut (pdfs[0])), None);
        *pdf = pdfs[0] * pdfs[1];
        Point2f { x: d0, y: d1 }
    }
    pub fn pdf(&self, p: Point2f) -> Float {
        let iu: usize = clamp_t(
            (p[XYEnum::X] * self.p_conditional_v[0].count() as Float) as usize,
            0_usize,
            self.p_conditional_v[0].count() - 1_usize,
        );
        let iv: usize = clamp_t(
            (p[XYEnum::Y] * self.p_marginal.count() as Float) as usize,
            0_usize,
            self.p_marginal.count() - 1_usize,
        );
        self.p_conditional_v[iv].func[iu] / self.p_marginal.func_int
    }
}

/// Randomly permute an array of *count* sample values, each of which
/// has *n_dimensions* dimensions.
pub fn shuffle<T>(samp: &mut [T], count: i32, n_dimensions: i32, rng: &mut Rng) {
    for i in 0..count {
        let other: i32 = i + rng.uniform_uint32_bounded((count - i) as u32) as i32;
        for j in 0..n_dimensions {
            samp.swap(
                (n_dimensions * i + j) as usize,
                (n_dimensions * other + j) as usize,
            );
        }
    }
}

/// Cosine-weighted hemisphere sampling using Malley's method.
#[inline]
pub fn cosine_sample_hemisphere(u: Point2f) -> Vector3f {
    let d: Point2f = concentric_sample_disk(u);
    let z: Float = (0.0 as Float)
        .max(1.0 as Float - d.x * d.x - d.y * d.y)
        .sqrt();
    Vector3f { x: d.x, y: d.y, z }
}

/// Returns a weight of cos_theta / PI.
#[inline]
pub fn cosine_hemisphere_pdf(cos_theta: Float) -> Float {
    cos_theta * INV_PI
}

/// Reducing the variance according to Veach's heuristic.
#[inline]
pub fn power_heuristic(nf: u8, f_pdf: Float, ng: u8, g_pdf: Float) -> Float {
    let f: Float = nf as Float * f_pdf;
    let g: Float = ng as Float * g_pdf;
    (f * f) / (f * f + g * g)
}

// see sampling.cpp

pub fn stratified_sample_1d(samp: &mut [Float], n_samples: i32, rng: &mut Rng, jitter: bool) {
    let inv_n_samples: Float = 1.0 as Float / n_samples as Float;
    for i in 0..n_samples {
        let delta = if jitter {
            rng.uniform_float()
        } else {
            0.5 as Float
        };
        samp[i as usize] =
            ((i as Float + delta) * inv_n_samples as Float).min(FLOAT_ONE_MINUS_EPSILON);
    }
}

pub fn stratified_sample_2d(samp: &mut [Point2f], nx: i32, ny: i32, rng: &mut Rng, jitter: bool) {
    let dx: Float = 1.0 as Float / nx as Float;
    let dy: Float = 1.0 as Float / ny as Float;
    let mut samp_idx: usize = 0;
    for y in 0..ny {
        for x in 0..nx {
            let jx = if jitter {
                rng.uniform_float()
            } else {
                0.5 as Float
            };
            let jy = if jitter {
                rng.uniform_float()
            } else {
                0.5 as Float
            };
            samp[samp_idx].x = ((x as Float + jx) * dx).min(FLOAT_ONE_MINUS_EPSILON);
            samp[samp_idx].y = ((y as Float + jy) * dy).min(FLOAT_ONE_MINUS_EPSILON);
            samp_idx += 1;
        }
    }
}

pub fn latin_hypercube(samples: &mut [Point2f], n_samples: u32, rng: &mut Rng) {
    let n_dim: usize = 2;
    // generate LHS samples along diagonal
    let inv_n_samples: Float = 1.0 as Float / n_samples as Float;
    for i in 0..n_samples {
        for j in 0..n_dim {
            let sj: Float = (i as Float + (rng.uniform_float())) * inv_n_samples;
            if j == 0 {
                samples[i as usize].x = sj.min(FLOAT_ONE_MINUS_EPSILON);
            } else {
                samples[i as usize].y = sj.min(FLOAT_ONE_MINUS_EPSILON);
            }
        }
    }
    // permute LHS samples in each dimension
    for i in 0..n_dim {
        for j in 0..n_samples {
            let other: u32 = j as u32 + rng.uniform_uint32_bounded((n_samples - j) as u32);
            if i == 0 {
                let tmp = samples[j as usize].x;
                samples[j as usize].x = samples[other as usize].x;
                samples[other as usize].x = tmp;
            } else {
                let tmp = samples[j as usize].y;
                samples[j as usize].y = samples[other as usize].y;
                samples[other as usize].y = tmp;
            }
            // samples.swap(
            //     (n_dim * j + i) as usize,
            //     (n_dim * other + i) as usize,
            // );
        }
    }
}

/// Uniformly sample rays in a hemisphere. Choose a direction.
pub fn uniform_sample_hemisphere(u: Point2f) -> Vector3f {
    let z: Float = u[XYEnum::X];
    let r: Float = (0.0 as Float).max(1.0 as Float - z * z).sqrt();
    let phi: Float = 2.0 as Float * PI * u[XYEnum::Y];
    Vector3f {
        x: r * phi.cos(),
        y: r * phi.sin(),
        z,
    }
}

/// Uniformly sample rays in a hemisphere. Probability density
/// function (PDF).
pub fn uniform_hemisphere_pdf() -> Float {
    INV_2_PI
}

/// Uniformly sample rays in a full sphere. Choose a direction.
pub fn uniform_sample_sphere(u: Point2f) -> Vector3f {
    let z: Float = 1.0 as Float - 2.0 as Float * u[XYEnum::X];
    let r: Float = (0.0 as Float).max(1.0 as Float - z * z).sqrt();
    let phi: Float = 2.0 as Float * PI * u[XYEnum::Y];
    Vector3f {
        x: r * phi.cos(),
        y: r * phi.sin(),
        z,
    }
}

/// Probability density function (PDF) of a sphere.
pub fn uniform_sphere_pdf() -> Float {
    INV_4_PI
}

/// Uniformly distribute samples over a unit disk.
pub fn concentric_sample_disk(u: Point2f) -> Point2f {
    // map uniform random numbers to $[-1,1]^2$
    let u_offset: Point2f = u * 2.0 as Float - Vector2f { x: 1.0, y: 1.0 };
    // handle degeneracy at the origin
    if u_offset.x == 0.0 as Float && u_offset.y == 0.0 as Float {
        return Point2f::default();
    }
    // apply concentric mapping to point
    let theta: Float;
    let r: Float;
    if u_offset.x.abs() > u_offset.y.abs() {
        r = u_offset.x;
        theta = PI_OVER_4 * (u_offset.y / u_offset.x);
    } else {
        r = u_offset.y;
        theta = PI_OVER_2 - PI_OVER_4 * (u_offset.x / u_offset.y);
    }
    Point2f {
        x: theta.cos(),
        y: theta.sin(),
    } * r
}

/// Uniformly sample rays in a cone of directions. Probability density
/// function (PDF).
pub fn uniform_cone_pdf(cos_theta_max: Float) -> Float {
    1.0 as Float / (2.0 as Float * PI * (1.0 as Float - cos_theta_max))
}

/// Samples in a cone of directions about the (0, 0, 1) axis.
pub fn uniform_sample_cone(u: Point2f, cos_theta_max: Float) -> Vector3f {
    let cos_theta: Float = (1.0 as Float - u[XYEnum::X]) + u[XYEnum::X] * cos_theta_max;
    let sin_theta: Float = (1.0 as Float - cos_theta * cos_theta).sqrt();
    let phi: Float = u[XYEnum::Y] * 2.0 as Float * PI;
    Vector3f {
        x: phi.cos() * sin_theta,
        y: phi.sin() * sin_theta,
        z: cos_theta,
    }
}

/// Uniformly distributing samples over isosceles right triangles
/// actually works for any triangle.
pub fn uniform_sample_triangle(u: Point2f) -> Point2f {
    let su0: Float = u[XYEnum::X].sqrt();
    Point2f {
        x: 1.0 as Float - su0,
        y: u[XYEnum::Y] * su0,
    }
}