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Abstract

Modern processor architectures rely on parallelism for performance, while realistic ren-
dering using global illumination algorithms is very computationally expensive. Thus, ex-
ploiting the hardware capabilities to execute multiple threads in parallel is essential for
an efficient renderer. While Path Tracing, for instance, is trivial to parallelize, the more
complex algorithms, like Vertex Connection and Merging (VCM), still pose a challenge.
In this thesis, we describe a parallel implementation of a renderer using VCM, and discuss
the advantages of VCM over Path Tracing. We describe several parallelization strategies
and evaluate their performance. In the discussion, we highlight the remaining bottlenecks
and propose potential solutions and ideas for future work.
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Chapter 1

Introduction

Photorealistic rendering of three-dimensional (3D) scenes is used in many fields. There is
high demand for renderers that achieve short rendering times and interactive frame rates
for scenes of various sizes and with various materials. Such renderers often have to run
on different types of hardware, from ordinary PCs to large server farms.

In this thesis, we implement a physically based 3D renderer, which achieves interactive
frame rates and short rendering times for scenes of various complexity. To accomplish this
goal, we combined an already existing fast scene traversal code, written with AnyDSL1,
with a robust and efficient rendering algorithm, namely Vertex Connection and Merging
(VCM) [Geo+12]. The renderer was implemented in C++ and runs on the CPU, while the
traversal part can run on either the CPU or the GPU. All design decisions in our imple-
mentation have been made with the thought in mind, that they might later on be adapted
to an implementation on the GPU.

Achieving high performance on modern hardware requires parallelism. The goal of this
thesis is to devise a parallelization scheme that works well with complex algorithms, espe-
cially VCM.We investigated and compared different approaches to parallelism. A parallel
design based on a combination of low-level and high-level parallelism was employed to
make maximum use of the fast traversal code, and to reduce shading times as far as pos-
sible. With this parallelism, our implementation achieves near-linear scalability for both
VCM and Path Tracing. Efficient use of the GPU traversal was possible as well, even
though the data transfer between the CPU and the GPU is slow.

VCM is a combination of multiple rendering algorithms and can easily be reduced to
any of them. We compared the performance results for a number of these algorithms.
Additionally, we implemented an optimized and well tested Path Tracer separately, as a
reference. We investigated whether the fewer samples required by a complex technique
like VCM actually yield a better convergence over time. In all our scenes, VCM performs
either much better or only slightly worse than the other algorithms. The Path Tracer was
much simpler to implement and achieves significantly higher frame rates. However, our
results show that VCM is often a better choice, and that it is possible to achieve interactive
frame rates with VCM as well.

1https://anydsl.github.io/index.html

https://anydsl.github.io/index.html
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Figure 1.1: The most challenging of our test scenes features complex caustics and consists of
almost half a million polygons. We achieved interactive frame rates and short rendering times for
a high quality image with this scene.

1.1 Outline

In Chapter 2, we review the basics of 3D rendering in general and physically based ren-
dering in particular. We briefly review the mathematical foundations and how scenes are
represented. The simplest algorithms, Path Tracing and its adjoint, Light Tracing, are de-
scribed. We discuss the more advanced algorithms, like Bidirectional Path Tracing and
VCM in this chapter as well.

Chapter 3 provides the necessary background for efficient hardware implementations on
both the CPU and the GPU. After briefly discussing the benefits of the AnyDSL frame-
work, we outline how the traversal library works.

Chapter 4 describes the design of our renderer. We present our parallelization scheme and
show how we made as much use as possible out of the fast traversal. Other optimizations,
like the light vertex cache, are also treated in this chapter.

Finally, in Chapter 5, we review our implementation in terms of performance, and possible
future improvements. We evaluate the performance of the different algorithms, using two
complex and five simpler test scenes. The complex scenes serve as real-world examples,
whereas the simpler scenes were used to isolate the costs of shading.



Chapter 2

Rendering

Rendering has a solid theoretical foundation, which we will briefly review in this chapter.
Most lighting effects that are visible in everyday life can be described using geometric
optics1. Thus, the natural way to compute light propagation through a scene is by tracing
rays between points on the surfaces of the scene – “ray tracing”. All algorithms presented
in this thesis are based on ray tracing. For a thorough discussion of what kinds of effects
are captured by geometric optics and ray tracing, and which require special case handling,
see [Vea98].

The renderer described in this thesis is limited to surface interactions. Things like volume
rendering and subsurface scattering are left for future work.

2.1 Scene Representation

Rendering a scene requires a description of its geometrical structure and the reflective and
transmissive properties of its surfaces. The following sections explain how this informa-
tion is usually represented in a renderer.

2.1.1 Geometry

There are multiple ways to represent the actual geometry of a 3D scene. The most com-
mon approach is by using triangle meshes, as they offer great artistic freedom as well as
simplicity in the implementation. Parametric surfaces, constructive solid geometry (CSG),
and voxel based representations are examples of other ways to describe the geometry. The
traversal library that was used for this thesis supports only triangle meshes.

Solving the rendering equation (see below) requires shooting rays and computing their in-
tersections with the scene geometry. This process is often called scene traversal. Traver-
sal makes up a huge portion of the rendering time, as it requires calculating thousands of
costly ray-triangle intersections for millions of rays. Performance is greatly increased by
using acceleration structures, like bounding volume hierarchies or kd-trees, to structure

1Geometric optics models the propagation of light using rays. See: https://en.wikipedia.org/
wiki/Geometrical_optics

https://en.wikipedia.org/wiki/Geometrical_optics
https://en.wikipedia.org/wiki/Geometrical_optics
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the geometry of the scene in a tree. The traversal library, that was used in this thesis,
uses a bounding volume hierarchy (BVH) on the GPU, and a multi-branching bounding
volume hierarchy (MBVH) [WBB08] on the CPU.

2.1.2 Materials

Apart from describing the geometry of a scene, using triangle meshes, we also need to
describe the reflective, transmissive, and emissive properties of the surfaces – their mate-
rials. Materials are often classified in diffuse, glossy, and specular materials, depending
on how they scatter incoming light. Figure 2.1 illustrates this classification.

(a) Diffuse (b) Glossy (c) Specular

Figure 2.1: Materials are usually divided in three categories. Diffuse materials (a) scatter light
uniformly in all directions, glossy materials (b) scatter light mostly in a small set of directions,
called the glossy lobe, and specular materials (c) scatter light from one incoming direction in
exactly one outgoing direction.

Examples for diffuse surfaces include paper and some kinds of plastic. Glossy surfaces
include brushed metal and wet floors. Glass, water, and polished metal are examples for
specular surfaces. Specular surfaces, and the complex caustics2 they can create, are very
challenging to render, because randomly sampling a pair of directions with a non-zero
contribution is impossible with specular surfaces. Improving convergence rates in the
presence of specular materials is the motivation behind many advanced rendering algo-
rithms like Vertex Connection and Merging.

Thematerial classification can be used to talk about light carrying paths in terms of the ma-
terials at the vertices of the path. A notation similar to regular expressions was introduced
by [Hec90]. With this notation, a path that starts at a light source and undergoes multi-
ple diffuse and one specular bounce before hitting the eye is written as “LD*SE”. Veach
([Vea98], pages 231 to 242) extended this notation and used it to discuss what kinds of
paths are difficult or impossible to sample.

2.2 Theory

The following sections review the basic theoretical concepts behind rendering with Monte
Carlo methods. More in-depth discussions of the topic can be found, for instance, in
[PH10], [Vea98], and [Geo15].

2Caustics are the complex light patterns that occur if light rays are bundled together by a specular surface
like, for instance, glass.
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2.2.1 The Light Transport Equation

The light transport equation, or rendering equation, was introduced by [Kaj86]. It de-
scribes the distribution of light in equilibrium state. The equation determines the amount
of light, in terms of radiance, leaving a point x on a surface in the scene in an outgoing
direction ωo. The outgoing radiance is given by the amount of light emitted in direction
ωo at point x, plus the amount of incident radiance from all directions, that is scattered in
direction ωo.

Lo(x, ωo) = Le(x, ωo) +

∫
Ω

f(ωi, x, ωo)Li(x, ωi)|cosθi|dωi (2.1)

Where

• Lo(x, ω), Le(x, ω), andLi(x, ω) denote the outgoing, emitted, and incident radiance
at point x in/from direction ω, respectively,

• Ω is the set of all directions,

• f(ωi, x, ωo), the bi-directional scattering distribution function (BSDF), determines
the percentage of incident radiance from direction ωi, arriving at point x, that is
reflected or transmitted in direction ωo,

• θi is the angle formed by the surface normal at point x and the incident direction ωi.

The incident light from all directions can again be determined using the same equation. It
holds that Li(x, ωi) = Lo(y,−ωi), where y is the first intersection point with the scene of
the ray with origin x and direction ωi.

2.2.2 The Measurement Equation

The goal during rendering usually is to compute an image from a specific point of view,
like a camera or the eye of a human observer. With the light transport equation (2.1), it is
(theoretically) possible to determine the exact amount of light travelling from any point in
the scene in a certain direction. But how can you get the pixel values of the resulting image
from these results? Themeasurement equation expresses this processmathematically. The
value, or measurement, I(j) of some pixel j is given by:

I(j) =

∫
SxΩ

W (j)
e (x, ω)Li(x, ω)|cosθ|dA(x)dω (2.2)

Where S denotes the sensor surface and dA the differential area. The sensor responsivity,
or importance, We(x, ω) determines how much the incident radiance from direction ω at
the point x on the sensor surface contributes to the pixel measurement I . Every pixel
measurement has its own responsivity function. Simply put, the responsivity function
determines which part of the sensor surface corresponds to the pixel, and from which
directions the pixel receives light.
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The Li quantities can be determined with the light transport equation, again using the
relation Li(x, ω) = Lo(y,−ω). We can compute the final image, as as perceived by the
sensor with surface S, by solving the measurement equation for all pixels.

2.2.3 Monte Carlo Integration

Solving the integrals in the light transport equation and the measurement equation analyt-
ically is generally not possible. Due to the high dimension and frequent discontinuities,
Monte Carlo integration is the best numeric method for solving those integrals, and other
integrals that are common in rendering. Monte Carlo integration is done by drawing ran-
dom samples from the integral, turning the integral into a discrete sum. The expected
value of the Monte Carlo estimator

FN =
1

N

N∑
i=1

f(Xi)

p(Xi)
(2.3)

is the solution of the integral. N is the number of samples, Xi the random variable from
which the samples are drawn, p(Xi) its probability density function (pdf), and f(x) the
function to be integrated.

Images rendered using Monte Carlo methods eventually converge to the correct solution,
given enough samples. Initially, without enough samples, they suffer from visible noise,
due to the variance of the estimator. Reducing the variance, and thus increasing the rate
at which the image converges, is the goal behind all algorithmic optimizations for Monte
Carlo methods.

2.2.4 Path Tracing

The Path Tracing algorithm was introduced along with the rendering equation in [Kaj86].
It is the straightforward way to apply Monte Carlo integration to the rendering equation.
Figure 2.2 illustrates the algorithm. Multiple paths are traced, starting at the camera. If a
path happens to hit a light source, the contribution is added. Every path forms a sample
of a Monte Carlo estimator, and the expected value of this estimator is the solution to the
combination of the measurement equation (2.2) with the light transport equation (2.1).

Next event estimation is a simple optimization to significantly improve the efficiency of
Path Tracing. At every intersection point (”vertex”) along the path, a shadow ray is cast to-
wards a light source. If the shadow ray does not intersect anything in front of the light, the
illumination is added to the path contribution. If point lights, or other physically incorrect
lights, are used, next event estimation is the only way to get any contribution at all, since
it is (mathematically) impossible that a randomly sampled ray intersects an infinitesimal
point.

Path Tracing is very simple to implement efficiently, because it is trivial to parallize. How-
ever, Path Tracing is not efficient at rendering caustics and indirect illumination, because
sampling such paths has a low probability but the paths usually have a high contribution.
Caustics created by point lights are impossible to sample, because next event estimation
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Light Path Vertex

Camera Path Vertex

Shadow Ray

Primary Ray

(a) Path Tracing. (b) Next Event Estimation.

Figure 2.2: Naïve Path Tracing traces paths until they hit a light. Next event estimation reduces
variance by connecting every vertex on the camera path to a random vertex on a light source.

does not work on specular surfaces. These effects are handled much better by Light Trac-
ing, another, equally simple, algorithm. Unfortunately, Light Tracing suffers from other
problems.

2.2.5 The Importance Transport Equation

Light Tracing belongs to the group of so-called particle tracing algorithms. These algo-
rithms trace the paths of photons emitted from the lights. Particle tracing can be formu-
lated mathematically, using the importance transport equation. By treating the importance
We(x, ω) as an emitted quantity, similar to how light sources emit light, the same trans-
port rules that can be applied to light also apply to importance. The resulting equation is
very similar to the light transport equation, except that importance, instead of radiance, is
traced through the scene.

Wo(x, ωo) = We(x, ωo) +

∫
Ω

f(ωo, x, ωi)Wi(x, ωi)|cosθi|dωi (2.4)

Here, Wo, We, and Wi denote the outgoing, emitted, and incident importance, respec-
tively. Note that the direction arguments of the BSDF have been swapped. The BSDF
still describes the scattering of light, rather than importance, and light travels in exactly
the opposite direction. Special care has to be taken if the BSDF is not symmetric, for in-
stance due to refraction or the use of shading normals3. Veach discussed the implications
of non-symmetric BSDFs in detail [Vea98]. We used his proposed solutions regarding
shading normals and refractions in our implementation.

2.2.6 Light Tracing

Light tracing [DLW93] is the adjoint of Path Tracing. Instead of tracing paths from the
camera to the lights, light tracing traces paths from the lights to the camera. Conversely,
it solves the importance transport equation, instead of the light transport equation. Next

3Shading normals are normals that are not perpendicular to the underlying geometry. They are used, for
instance, to achieve smooth looking or highly detailed surfaces with few primitives.
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Figure 2.3: Light Tracing traces paths starting at the light source, connecting every vertex to the
camera.

event estimation also works with light tracing, by connecting every vertex to the camera
and adding the resulting contributions to the corresponding pixels. As with point lights in
Path Tracing, this is the only way to get any contribution at all, if the camera is modeled
as an infinitesimal pinhole camera, which is often the case. Figure 2.3 illustrates the paths
generated during light tracing.

Light tracing is very efficient at handling caustics and indirect illumination. The probabil-
ity to sample these paths is proportional to their contribution. However, the inefficiencies
from which Path Tracing suffers in the presence of point lights or small area lights also oc-
cur in Light Tracing for pinhole cameras and small sensors. Specular reflections directly
seen by a (pinhole) camera are difficult or impossible to sample. Also, the probability
to sample a path that actually contributes to the rendered image is often very low. Thus,
direct illumination is very noisy. Figure 2.4 shows the differences between Light Tracing
and Path Tracing after the same rendering time.

2.3 Efficient Algorithms

In this thesis, we focus on three important aspects of a rendering algorithm. An algorithm
should be consistent, robust, and efficient.

A consistent algorithm converges to the correct result, given enough time.

A robust algorithm can handle many, ideally all, kinds of scenes well.

An efficient algorithm requires as few samples as possible to obtain a high quality result.

VCM is one of the few algorithms to fulfill all three criteria. Before discussing what makes
VCM consistent, robust, and efficient, we review the techniques and algorithms on which
VCM is based.

2.3.1 Multiple Importance Sampling

Importance sampling, see for instance [PH10] pages 688 to 690, is crucial for Monte Carlo
methods. Variance, and thus the required number of samples, is greatly reduced when
sampling from a distribution that is proportional, or at least similar, to the integrand. Un-
fortunately, finding such a distribution is not always possible, because the shape of the
integrand is often unknown or too complex. In many cases, it is possible to find multiple
distributions that each correspond to different parts of the integrand (see Figure 2.5).
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Figure 2.4: Comparison of the images created by Path Tracing (left) and Light Tracing (right)
within five seconds. With Light Tracing, indirect illumination is much smoother and caustics are
already very clear. Path Tracing suffers from a lot of noise but it can capture directly visible
reflections and refractions. Note that the contribution from direct illumination in the lower images
is much less noisy with Path Tracing.
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Figure 2.5: Often, different distributions work well for different parts of an integrand. Multiple
Importance sampling offers a way to combine samples from multiple such distributions in a way
that produces good results overall.

Multiple Importance Sampling (MIS) [VG95] combines samples from different distribu-
tions in a way that minimizes variance. Multiple sampling techniques, and thus distribu-
tions, are used to generate samples. The samples are then weighted, taking the pdf values
of all the techniques into account, that could create this sample as well. The estimator for
multiple importance sampling is given by

FN =
N∑
i=1

1

ni

ni∑
j=1

wi(Xi,j)
f(Xi,j)

pi(Xi,j)
(2.5)

whereN is the number of sampling techniques, ni the number of samples from technique
i and wi the weighting function. The weights have to sum up to one.

Weighting is usually done using a heuristic function. It can be proven that the power
heuristic yields good results. It is given by

wi(Xi,j) =
nβ
i p

β
i (Xi,j)∑N

k=1 n
β
kp

β
k(Xi,j)

(2.6)

Were ni is the number of samples from technique i, and pi is the pdf of the technique.
Setting β = 2 is a particularly good choice for the power heuristic. The balance heuristic,
another heuristic that works well in practice, can be obtained by setting β = 1.

MIS is used in Bidirectional Path Tracing and in VCM. It is the reason why these algo-
rithms are efficient.

2.3.2 Bidirectional Path Tracing

Bidirectional Path Tracing (BPT) [VG94] [LW93] combines Path Tracing and Light Trac-
ing, using MIS. A path is traced starting at the light source, and another path starting at
the camera. The vertices of the camera path are connected to the vertices of the light path,
by tracing a shadow ray between them. Every such connection forms a (potential) path
from the camera to the light source. The idea is illustrated in Figure 2.8(a). Additionally,
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Figure 2.6: Bidirectional Path Tracing (right parts) can handle indirect illumination and caustics
as well as Light Tracing and direct illumination as well as Path Tracing (left parts).

it is possible, and beneficial, to also use next event estimation with BPT. In that case, BPT
combines the contributions from four sampling techniques:

1. connecting light vertices to the camera,

2. connecting camera vertices to a point on a light,

3. connecting camera vertices to light vertices,

4. randomly hitting a light during the Path Tracing step.

MIS can – and should – be used to combine the contributions from those techniques.
Figure 2.6 shows how BPT combines the benefits from Path Tracing and Light Tracing,
without suffering from the drawbacks of either.

There is one specific kind of paths, namely specular-diffuse-specular (SDS) paths, that
pose a challenge for BPT and many other algorithms, because sampling these paths is
very difficult. SDS paths represent reflections and refractions of caustics. One example
can be seen on the mirror wall close to the right border of Figure 2.6. Figure 2.7 illustrates
why these paths are difficult to sample. They require randomly sampling a direction that
hits the specular surface in a way such that the refracted, or reflected, ray hits the light
source (or the camera). SDS paths can only be sampled with BPT, if lights or cameras
with a non-zero area are used. Furthermore, SDS paths have a low probability but usually
a high contribution. Thus, the variance for those paths is high.

2.3.3 Photon Mapping and Progressive Photon Mapping

Another kind of algorithm, PhotonMapping [Jen96], is actually very efficient at capturing
SDS paths. Photon Mapping is done in two steps, or passes. The first pass traces the
photon paths, starting on the light sources. The vertices of these paths (that is the photons)
are stored. The second pass traces paths starting at the camera. A nearest neighbor search
is performed at every camera vertex, to find all photons within a fixed radius. The camera
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Glass

(a) BPT

Glass

(b) PM

Figure 2.7: In BPT (left), SDS paths can only be captured by unidirectional techniques, that is
Path Tracing or Light Tracing. Sampling one of the few outgoing directions at the diffuse surface,
that will actually intersect the light, is very unlikely for small area lights and impossible for point
lights. Photon Mapping (right) reuses light paths that happen to hit the diffuse surface.

vertices and the photons within the radius are treated as if they lay at the same point, they
are “merged”. The algorithm is illustrated in 2.8(b). Figure 2.7(b) illustrates how photon
mapping can handle SDS paths efficiently, by reusing paths. Even if only a few photons
hit a diffuse surface, their contributions can be used for many camera paths.

Merging vertices within a non-zero radius introduces bias. Progressive Photon Mapping
(PPM) [HOJ08]makes PhotonMapping consistent by reducing the radius over time, hence
progressively reducing the bias as well.

Unfortunately, (Progressive) Photon Mapping is inefficient at handling diffuse and glossy
surfaces, especially if illuminated by far away light sources. The photon density on these
surfaces is usually not high enough. Even after five minutes, diffuse and glossy surfaces
are still very noisy, as can be seen in Figure 2.9. Multiple approaches exist to alleviate this
problem, for instance Stochastic Progressive Photon Mapping [HJ09] and Bidirectional
Photon Mapping [Vor11], but none of those can handle all types of paths well, especially
not if glossy materials are involved. It would be desirable to find a more robust algorithm,
that combines the benefits of BPT and PPM,whithout suffering from any of the drawbacks.

2.3.4 Vertex Connection and Merging

Vertex Connection and Merging (VCM) [Geo+12] uses multiple importance sampling to
combine Bidirectional Path Tracing and Progressive Photon Mapping. Hence the name
Vertex Connection (BPT) and Merging (PPM). The same algorithm, with a slightly dif-
ferent derivation, was also proposed by [HPJ12] under the name Unified Path Sampling.

Figure 2.8(c) illustrates the path sampling during VCM. The camera vertices are connected
to the vertices of one light path, and merged with the vertices of all light paths within
the radius. Figure 2.10 shows that VCM can handle SDS paths as well as Progressive
Photon Mapping, while also producing less noise on diffuse and glossy surfaces. Because
Progressive Photon Mapping is biased but consistent, VCM is also biased but consistent.
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(a) Bidirectional Path Tracing
(b) Photon Mapping

(c) Vertex Connection and Merging

Figure 2.8: Illustrations of paths that would be sampled by BPT, (P)PM, and VCM.

2.3.5 Partial MIS Weight Evaluation

Amajor problem of BPT and VCM is that evaluating theMIS weights requires knowledge
of how the path was sampled at every vertex. In other implementations, that was often
solved by iterating over the path. However, that is not very efficient, especially not in a
parallel implementation.

[Geo12] showed that it is possible to compute the MIS weights based on only the informa-
tion that is stored in the last vertex of a path. Three quantities are stored in every vertex of
both the camera and the light paths, and they are updated after every scattering step. Out of
those quantities, the total MIS weight can be computed. Computing the MIS weights this
way executes the same instructions on every vertex, which makes GPU implementations
more efficient and also allows to compute the weights using SIMD on the CPU.

With this partial evaluation scheme it is unnecessary to store any information regarding the
path structure. Only the vertices themselves are needed, which enables some additional
optimizations in the implementation.
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Figure 2.9: The image rendered with PPM after five minutes (left) compared to the reference (top
right). The structural similarity difference image (bottom right) highlights the problems of PPM.
Although the caustics seen through the glass are very converged, the glossy and diffuse surfaces
are still very noisy, as are their reflections.

Figure 2.10: VCM (right) combines the benefits of BPT and PPM (left), without suffering from any
of the drawbacks, except for the bias from the Photon Mapping. The SSIM images at the bottom
highlight the parts where the individual algorithms are inefficient.
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Performance

There are two common approaches to achieving fast rendering times. Finding better algo-
rithms that require fewer samples, as described in the previous chapter; and implementing
an algorithm in a way that reduces the time per sample. In this thesis, we used both ap-
proaches. We implemented an efficient algorithm, Vertex Connection and Merging, in
a parallel renderer, using a fast scene traversal library. The following sections briefly
summarize some background information and related work on high performance imple-
mentations of those algorithms.

3.1 Efficient Implementations

At first glance, ray tracing appears to be trivial to parallelize. The abundance of rays that
can be generated and processed independently from each other lends to this belief. Unfor-
tunately, things are not that simple. Today’s hardware relies a lot on data parallelism, that
is, applying the same operation on multiple values at the same time. This is called sin-
gle instruction, multiple data (SIMD) on the CPU, and single instruction, multiple thread
(SIMT) on the GPU. Thus, efficient ray tracing on both the CPU and the GPU requires
tracing many coherent rays at the same time. In this way, the same operations can be ap-
plied to those rays at the same time. While on the CPU this can be achieved by tracing
hundreds of rays in parallel, fully utilizing the GPU requires millions of rays.

3.1.1 Taking Advantage of the CPU

Achieving interactive frame rates with ray tracing on the CPU was first done by tracing
coherent packets of rays and using SIMD to process the rays inside those packets in par-
allel [Wal+01]. This approach does not work very well for Path Tracing and other global
illumination techniques. The coherence of the rays inside a packet decreases with every
bounce. To account for this problem, bounding volume hierarchies with a branching fac-
tor of more than two were used. With those, a single ray can be intersected with multiple
bounding boxes in parallel [WBB08]. The current state of the art in terms of traversal
performance on the CPU, Embree [Wal+14], uses both approaches.
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3.1.2 Taking Advantage of the GPU

The GPU, with its SIMT approach to parallelism, relies heavily on processing a huge
amount of coherent data. The smaller cache size, larger bandwidth, and reliance on la-
tency hiding methods make the GPU quite different from the CPU. An implementation
that works well on the CPU does not necessarily work well on the GPU, and vice versa.
[LKA13] summarized those differences and showed how Path Tracing can be done effi-
ciently on the GPU, even in the presence of costly materials. Currently, OptiX [Par+10] is
considered the fastest GPU ray tracing framework. [Dav+14] compares the performance
of a number of GPU implementations of Path Tracing, Bidirectional Path Tracing, Photon
Mapping, and VCM.

3.1.3 The AnyDSL Framework

It is often desirable to implement a renderer, or another high performance application, on
different kinds of hardware, for instance on the GPU and the CPU. Mapping the same
application to different hardware requires special case code. Abstracting this mapping
from the rest of the renderer is very desirable. In most programming languages, expressing
such abstractions is very difficult and creates code that is very hard to understand and
maintain. For instance, in C++ template metaprogramming can be used for this purpose
[GS08], but the code tends to become very long and very messy. AnyDSL [Any] has
the goal to allow to efficiently and cleanly express such abstractions. It also promises
many additional benefits, like vectorization and partial evaluation. AnyDSL is based on its
intermediate representation, Thorin [LKH15], and offers a programming language called
Impala, a dialect of Rust.

Currently, the AnyDSL framework is not yet mature enough to implement a complex
renderer. It lacks essential things like polymorphism. Compilation times for large code
are very long, and debugging is difficult. However, an efficient scene traversal library was
implemented in Impala. The traversal library runs on both the CPU and the GPU. It can
compete with the state of the art on both platforms, although the development time was
quite short and the code is comparatively simple and clean.

In this thesis, we use the Impala traversal library to implement a parallel renderer, that
may also serve as a prototype and reference for a potential future implementation of an
entire renderer in Impala.

3.2 The Traversal Library

The traversal library processes lots of rays in parallel. It expects an array of rays as input
and returns an array with the corresponding hit points. For efficient ray intersection tests,
a bounding volume hierarchy (BVH) is used. The BVH is passed to the traversal, along
with some other scene information.

On the CPU, the traversal uses a multi-branching bounding volume hierarchy (MBVH)
[WBB08]. A MBVH is a BVH with a branching factor of more than two. Currently, a
branching factor of four is used. Groups of eight rays are intersected with all four children
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of a node or with the contained triangles, using SIMD. Additionally, multiple threads are
processing groups of rays in parallel.

The GPU traversal uses a standard BVH. Blocks of 64 rays are intersected with the nodes
and triangles of this BVH. The rays within such a block are processed in parallel and
multiple blocks may also be processed in parallel.

The (M)BVHs were built using spatial splits [SFD09]. We used settings favoring runtime
performance over building times. Furthermore, we stored precomputed (M)BVHs for our
scenes, to simplify testing.

The traversal library offers two different traversal functions. One for traversing primary
rays, and another for traversing shadow rays. When traversing primary rays on the one
hand, it is necessary to find the closest intersection. For shadow rays on the other hand, it
suffices to determine if there is any intersection at all.
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Implementation

The renderer was implemented in C++, using the Impala traversal code as a library. The
focus of the implementation was on finding a promising and scalable parallel design. We
made sure that most parts of this design can also be implemented on the GPU in an effi-
cient way. Thus, the renderer can also serve as a starting point and reference for a future
implementation in Impala.

Vertex Connection and Merging (VCM) was chosen as the rendering algorithm for two
reasons. Because it is a combination of the most common rendering algorithms, and be-
cause it is robust. From an implementation point of view, VCM is attractive because
insights gained from a high performance implementation of VCM often also apply to the
sub-algorithms. Apart from that, a renderer using a robust algorithm can handle a large
variety of scenes, which is a desirable property.

In order to make efficient use of the traversal, thousands of rays have to be processed at the
same time. Thus, the traditional approach of tracing one complete path at a time cannot
be used. Instead, thousands of paths have to be traced at the same time. Every traversal
step extends all those paths by another ray. This process is often referred to as wavefront
Path Tracing.

The implementation combines two sources of parallelism. The traversal processes lots of
rays in parallel, and the shading processes the resulting hit points in parallel as well. We re-
fer to this as the low-level parallelism, because the individual tasks that can be parallelized
are many and small.

Even on the CPU, the low-level parallelism alone is not enough to fully utilize all cores all
the time, because the traversal and the shading depend on each other’s output. The second
source of parallelism, the high-level parallelism, further increases the CPU utilization.
The high-level parallelism is based on processing sets of rays in parallel. When using
the CPU traversal, the high-level parallelism improves load balancing. When using the
GPU traversal, the high-level parallelism helps to keep the CPU busy, while the GPU is
traversing rays. Two different approaches were experimented with. They are described in
Section 4.3.3.
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4.1 Overview

Figure 4.1 illustrates the structure of the renderer. The renderer is split into three separate
libraries. The frontend, the traversal, and the main renderer form individual libraries.
The frontend manages the user interface, loads the scene, and initializes the integrator for
rendering. It also builds the acceleration structure (BVH or MBVH) or loads it from a file
and, if using the GPU traversal, transfers the scene data to the GPU. The main renderer
consists of the ray generation, the integrators, the material system, the ray queues, and the
schedulers.

The integrators implement the rendering algorithm. Two integrators are provided: one
for Path Tracing and one for VCM. The VCM integrator can be restricted to any of its
sub-algorithms. Path tracing was implemented separately to serve as a reference.

Frontend
UI, SDL, loaders,...

Integrators
PT, VCM

Materials

Scheduler

Traversal

selects

creates

Ray Generation
Cameras, Lights

creates

RayQueue
RayQueue

RayQueue

fills
invokes

invokes

uses

uses

Figure 4.1: The architecture of the renderer. Interacting with the user, loading the scene, and
building the acceleration structure happens within the frontend. The integrators implement the
actual rendering algorithms. The scheduler implements the high-level parallelism and provides
the queues of rays and hit points for the integrator and the traversal.

Paths are traced in a wavefront fashion. The process is illustrated in Figure 4.2. Initially,
the camera or the light sources are sampled to obtain a set of primary rays. Those rays
are then traversed, generating a set of hit points. Shading the hit points might create con-
tinuation rays. The continuation rays will again be traversed, and their hit points will be
shaded, and so on. The process is repeated until there are no more rays left, that is, until all
paths are terminated. Shading may also generate shadow rays. Shadow rays do not create
more rays, and traversing shadow rays is faster, because the exact hit point location does
not have to be determined. Therefore, our implementation separates shadow rays from
primary rays.
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Primary 
rays

Traverse primary rays
(in parallel)

Shade hit points
(in parallel)

Traverse shadow rays
(in parallel)

Shadow 
rays

Accumulate pixel values 
from shadow ray hits

Sample camera or lights
Hit 
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Figure 4.2: The rendering process. Queues of rays are filled and traversed in parallel. The
resulting hit points are also shaded in parallel. Shading generates continuation rays and shadow
rays. Shadow rays are traversed and shaded separately for efficiency.

4.1.1 The Material System

Thematerial system is used to evaluate and sample the bidirectional scattering distribution
function (BSDF). The design of the material system is based on a simplified and improved
version of the system in PBRT ([PH10], pages 423 to 499). The material at a specific hit
point is represented by a BSDF object, which consists of one BRDF object and one BTDF
object. These three objects together store all relevant data at the hit point (for example
the texture color, the index of refraction, and the Fresnel term). Storing all necessary
information in the BSDF objects allows precomputing expensive operations, like texture
lookups. Hence, evaluating the same BSDF multiple times is more efficient. A thread-
local memory arena is used to store the BSDFs in an allocation free manner, allowing
BSDFs of arbitrary sizes. Figure 4.3 illustrates the design using a simple glass material
as an example. The actual material object, assigned to a primitive in the scene, stores the
textures and other general information. The material object is used to create the BSDF
objects for one specific hit point.

The evaluation method of the BSDF object selects the corresponding method in the BRDF
or BTDF object, depending on whether the incoming and outgoing directions are on the
same side of the surface. When sampling a direction from the BSDF, importance sam-
pling is used to determine whether to sample the BRDF or the BTDF. The probability for
importance sampling is determined by the BTDF. This kind of importance sampling was
much simpler to implement by restricting our system to only one BRDF and one BTDF per
BSDF. The system is still as expressive as the one in PBRT, because we instead combine
multiple BRDFs or BTDFs into a single BRDF or BTDF.

4.2 The VCM Integrator

The structure of the renderer is best understood by looking at the implementation of an
integrator. In this section, we discuss the most complex one, the VCM integrator. VCM
is implemented in two passes. Each pass follows the structure outlined in Figure 4.2.
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BSDF

-local_coordinates_matrix

-intersection_data
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-reflectance
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+sample(in_dir):color,dir,pdf
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Figure 4.3: Components of the material system for the example of a simple glass material. Mate-
rials store the textures, constant colors, and other general data. BSDF objects contain the texture
values and other information specific to one hit point. Storing the data in that way reduces the
number of texture lookups and other costly (memory) operations.
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The two passes differ only in what happens during shading, and what kinds of rays are
generated. The first pass traces the light paths, and the second pass traces the camera
paths. Because we are processing thousands of paths at the same time, rather than one path
at a time, we need to somehow associate some state information to those paths. Figure 4.4
shows the data that is stored in the state of a path from the VCM integrator. The data is
the same for both camera and light paths. The states of all paths are stored along with the
last ray of that path inside the ray queue.

1 stuct VCMState {
2 // Identifies the path via the pixel
3 // and pixel sample that it belongs too.
4 int pixel_id;
5 int sample_id;
6
7 // Every path has its own random number generator state.
8 RNG rng;
9
10 float4 throughput;
11 int path_length : 7;
12
13 // Indicates whether the path originated on a directional light source
14 // Only used during light tracing.
15 bool started_on_dir_light : 1;
16
17 // Russian roulette probability for continuing this path.
18 float continue_prob;
19
20 // The partial weights for MIS.
21 float dVC;
22 float dVCM;
23 float dVM;
24 };

Figure 4.4: The state data that is stored along with every ray from VCM.

The first pass of a VCM frame traces the light paths. Light sources are sampled for as
many rays as there will be camera rays. Hence, for each camera path there is a light path
to connect to. The rays sampled from the lights are traversed and shaded until all paths
are terminated, as shown in Figure 4.2. Every hit point (vertex) is stored, except for hit
points on specular surfaces. Connecting to, or merging with, a vertex on a specular surface
makes no mathematical sense, as a randomly chosen pair of directions has zero probability
to have a non-zero contribution. Apart from storing the vertices, the partial MIS weights
are updated, and shadow rays towards the camera are computed. The contribution of non-
occluded shadow rays is stored in the throughput of its state. Light paths are terminated
if their throughput reaches zero, or with Russian Roulette. If the path is not terminated, a
continuation ray is sampled. The continuation rays are traversed and processed the same
way as the primary rays. Thus, they might also create shadow rays and continuation rays,
until all paths are terminated.

Once all light paths have been traced and their vertices stored, the range search structure
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for photon mapping is built. We used an adapted version of the hash grid from [Dav].
Optimizing the photon mapping performance was not part of this thesis, although a limited
number of obvious optimizations were made. Building the photon map is not parallelized
– at least not on a per photon basis, that is, not with low-level parallelism – but multiple
search queries are executed in parallel.

The second pass traces the camera paths. The process is the same as with the light paths.
Only instead of connecting every hit point to the camera, they are connected to a point
on a light source and the vertices on a light path, and then merged with all light vertices
within the radius.

4.3 Improvements

Thanks to the fast traversal, even the first version of our implementation performed quite
well. The improvements described in this section increase the performance even further.
All improvements combined achieved a speed-up of up to a factor of four in our tests. The
following sections describe the most interesting improvements.

The light vertex cache, described in section 4.3.1, simplifies storing the light path vertices
and thus improves the performance of the photon mapping implementation. It also allows
to control the number of vertex connections.

A frame in our implementation is an image consisting of one or more samples per pixel.
Allowingmultiple samples per frame improves coherence and ray count, and thus traversal
performance. There are also other cases where this can cause a significant speed-up. The
benefits and pitfalls are discussed in section 4.3.2.

The most important factor for performance is the high-level parallelism. It is discussed in
section 4.3.3.

4.3.1 Light Vertex Cache

The light vertex cache was introduced by [Dav+14] as a technique that significantly in-
creases the performance of BPT and VCM implementations on the GPU. Instead of storing
entire light paths, the light vertex cache stores only the vertices of the paths. The partial
MIS weights, described in section 2.3.5, made this idea possible. Storing all light ver-
tices in a simple array or std::vector simplifies the code significantly. As our photon
mapping hash grid stores only references to the actual light path vertices, using the vertex
cache gave a huge speed-up for large radii, due to simplified iteration over all photons and
better memory coherence.

The major benefit of the light vertex cache in a CPU implementation, however, is that
the number of connections can be configured. Instead of connecting all the vertices of
a camera path to all the vertices of one randomly chosen light path, the camera vertices
are connected to a given number of vertices chosen randomly from all the vertices within
the cache. This can be thought of as first randomly choosing a light path, with a pdf
proportional to the number of vertices in the path, and then selecting one vertex from this
path with uniform probability. Mathematically, this means that a conversion from the old
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random process, selecting one light path out of Np paths with uniform probability, to the
new one is required. The new pdf for choosing a vertex is simply p(x) = 1

Nv
, where Nv

is the number of vertices in the cache. Thus, the conversion factor is given by

cvc =
1

Nc

∗ Nv

Np

(4.1)

where Nc denotes the number of connections that were made, that is, the number of sam-
ples that were drawn.

The light vertex cache has a fixed size. This was a necessity when implementing it on
the GPU. Considering that memory allocation is costly, it is also a reasonable idea on the
CPU. However, the cache has to be large enough to store all vertices created during one
iteration. Otherwise, some vertices will have to be discarded, introducing bias. Setting
the size of the cache to the average light path length times the number of light paths and
adding a ten percent safetymargin accomplishes this goal. There are usuallymore than one
million light paths traced per iteration. Statistically, it is almost impossible that the total
number of vertices during any iteration is larger than this cache size. [Dav+14] reported
that with this size, they never had to discard a single vertex. We confirmed this in our
convergence tests, which lasted for many hours. The cache size can be computed once
per scene in a preprocessing step. Pseudocode is given in Listing 4.5. A small number of
light paths is traced through the scene, and the number of vertices that those paths would
create is counted and averaged over the number of paths. This step requires only a few
milliseconds.

1 def preprocess():
2 rays = sample_light_rays(10000)
3 vertex_count = 0
4 while len(rays) > 0:
5 hits = traverse(rays)
6 rays = []
7 for hit in hits:
8 if hit.valid:
9 vertex_count++
10 if russian_roulette():
11 rays.append(bounce(hit))
12
13 avg_len = vertex_count / 10000
14 allocate_lvc(avg_len * path_count * 1.1)

Figure 4.5: Pseudocode for the function that computes the size of the light vertex cache. The
function is called only once per scene. It is quite simple and also very fast.

Tweaking the number of connections, Nc, allows for a high grade of flexibility. Whereas
a small Nc increases the frame rate, larger values reduce the variance and thus the noise
in a single frame. However, accessing randomly selected elements of a very large array,
especially when done within multiple threads, does not go nicely with the cache-centered
performance of the CPU. Due to frequent cache misses, the performance decreases rapidly
for Nc > 1.
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Table 4.1 compares the different numbers of connections for BPT in terms of performance
and root-mean-squared error (RMSE) after 30 seconds. Using more than one connection
hurts performance. Even for the simple Cornell Box scene, where the costs of traversing
the additional shadow rays is negligible, the slow-down is comparable to themore complex
Sponza and Still Life scenes. Thus, the problem is not the traversal of the shadow rays,
but rather the code that creates those rays. Profiling confirmed that cache misses are the
bottleneck. Multiple connections require multiple vertices from the light vertex cache. As
it is very unlikely that randomly selecting two vertices yields two adjacent ones, this is
likely to cause cache misses.

Using only a single connection increases performance significantly. More connections
yield only a small improvement in quality after the same number of samples. The dif-
ference between one and eight connections after the same number of samples was only
visible in the Sponza scene. However, even for the Sponza scene, the additional time per
sample from using more connections yields worse results overall. Thus, we used a single
connection in all our tests.

Count Samples Per Second RMSE
1 0.98 M 838
2 0.80 M 847
4 0.16 M 909
8 0.41 M 1075

(a) Cornell Box

Count Samples Per Second RMSE
1 0.68 M 5560
2 0.61 M 5560
4 0.51 M 5687
8 0.39 M 5929

(b) Still Life

Count Samples Per Second RMSE
1 0.51 M 3991
2 0.45 M 3837
4 0.35 M 3925
8 0.25 M 4208

(c) Sponza

Table 4.1: The tables compare the performance in terms of samples per second to the root-mean-
squared error (RMSE) after 30 seconds. Fewer connections yield better convergence rates.

4.3.2 Multiple Samples

For optimal traversal performance, it is important to have many coherent rays. Rendering
more than one sample per pixel during every frame increases both coherence and ray
count. Our implementation supports a (theoretically) arbitrarily high number of samples.
How many samples can be processed is only limited by the available memory for storing
the rays and hit points. By using atomic operations to add the sample contributions to
the final image, we can support multiple samples per frame without any (measurable)
synchronization overhead.

Because we are processing the rays in parallel, those rays, their states, and their hit points
have to be stored inmemory at some point. Usingmultiple samples per frame increases the
number of rays, and thus also the memory consumption. Because the memory available
on the GPU is often smaller than the CPUmemory, we made sure to only allocate as much
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memory on the GPU as is needed to traverse the largest possible queue of rays. When
using the tile scheduler (described below), for instance, this means that we only allocate
enough memory on the GPU to store all the rays of a single tile. This allowed us to use
much more samples per frame with the GPU traversal.

Building the hash grid that is used for photon mapping is not parallelized on a per-photon
basis. With more than one sample per frame, we also build more than one hash grid per
frame. Those hash grids can be built in parallel, which improves the CPU utilization
significantly. Figure 4.6 shows the CPU utilization of VCM, using the tile scheduler, with
one and with four samples per frame. Building four hash grids in parallel occupies all four
cores of our CPU, whereas with a single sample, all cores are idle but one.
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Figure 4.6: The CPU utilization for VCM with the GPU traversal is significantly better when
using multiple samples for one frame (left), compared to using just a single sample (right). Both
versions use the tile scheduler and the GPU traversal. Every drop to 25 percent (one core) in the
right chart occurs when building a photon map.

Figure 4.7 shows how the performance, in terms of rays per second, changes by increasing
the number of samples. Path Tracing always benefits from additional samples, because
the rendering times are dominated by the traversal. VCM, on the other hand, actually got
slower when using too many samples. The number of light vertices that have to be stored
increases with every sample. Thus, having too many samples causes cache misses or even
page faults, which hurts performance. On our hardware, using four samples per frame
yielded the best performance for VCM. That was not very surprising, considering that we
were using a CPU with four cores. Fewer samples would be less efficient while building
the photon map, whereas more samples would produce too many light vertices.
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Figure 4.7: While the performance of the Path Tracer (left) increases with every additional sample
per frame, with VCM (right) it is possible to have too many samples.
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4.3.3 Schedulers

The low-level parallelismwas realizedwith Intel ThreadingBuildingBlocks (TBB, [Inta]).
TBB automatically schedules parallel tasks to the available cores. TBB was chosen be-
cause it mixes well with additional parallelism from other sources. The low-level paral-
lelism, from processing hit points in parallel with tbb::parallel_for, is of course not
enough to fully utilize the CPU when using the GPU traversal. With only the low-level
parallelism, the CPUwould be idle while traversing. The high-level parallelism, described
in this section, occupies the CPU by shading the hit points from another set of rays, while
waiting for the output from the GPU traversal.

The additional high-level parallelism is also beneficial when using the CPU traversal,
although rays and hit points are already processed in parallel. Partitioning the rays into
groups and processing those groups in parallel allows for better load balancing and latency
hiding, thus further improving the CPU utilization.

There is a trade-off between the amount of high-level parallelism and the performance of
the traversal. Whereas having a large amount of small sets of rays would be ideal for load
balancing, traversal is only efficient for large numbers of coherent rays, especially on the
GPU.

The high level parallelism is implemented by the schedulers. A scheduler manages a set
of ray queues, fills them with primary rays, and invokes traversal or shading on them.
We experimented with two different approaches to scheduling, which are described in the
following sections.

Tile Scheduler

When partitioning camera rays, it is generally a good idea to split an image into (equally
sized) tiles. The camera rays of neighboring pixels are very coherent and so are the hit
points they produce. For load balancing, it is beneficial to have as many tiles as possible.
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Figure 4.8: Relative speed-up from the tile scheduler for the CPU traversal (left) and the GPU
traversal (right). Different tile sizes and samples per pixel (SPP) are compared for Path Tracing
and VCM. For VCM, one or four samples where used. Path Tracing used either one or sixteen
samples.
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To maintain a high ray count at the same time, multiple samples per pixel can be used per
frame. By adjusting the size of the tiles, the number of rays within a partition is easily
controlled.

Something to keep in mind is that light paths are not directly related to the pixels of the
rendered image. Thus, partitioning light paths into tiles does not yield more coherent rays.
That means that the tile based scheduler is not necessarily the best solution for tracing light
paths. However, in our experiments, the tile scheduler was also the better choice for light
paths.

The tile scheduler maintains a pool of threads. Each thread selects the next available tile,
by increasing an atomic counter. The rays within this tile are then traversed and shaded,
until all paths are completed. The threads have been implemented using std::thread,
and not TBB, because TBB tasks are not efficient for code that is frequently blocking or
waiting for IO [Intb], which is the case when using the GPU traversal.

Figure 4.8 shows the speed up from using the tile scheduler, with varying tile sizes and
samples per pixel, with the CPU traversal and the GPU traversal. Performance was mea-
sured for the Still Life scene, the behavior in other scenes is similar. While the Path
Tracer benefits a lot from the tile scheduler, the benefit for VCM is smaller. The speed-
up is larger when using the GPU traversal, as would be expected, because the CPU is no
longer idle while traversing. The speed-up that was achieved with the CPU traversal is
also surprisingly high.

The CPU utilization when using the tile scheduler for Path Tracing is plotted in Figure
4.9(b) and 4.11(b), for the GPU traversal and the CPU traversal respectively. The mea-
surements were made on a CPUwith four cores, using 2562 tiles and one sample per frame.
The plotted curves show that the tile scheduler offers a significant improvement. With the
CPU traversal, the utilization is almost at 100%. There is still room for improvement with
the GPU traversal, but it is very unlikely to achieve full CPU utilization, because the shad-
ing part is quite cheap during Path Tracing. The utilization for VCM is plotted in Figure
4.10(b) and 4.12(b). The regular drops to 25 percent utilization are caused by the single-
threaded construction of the photon map. While the photon map is being built, nothing
else can be done. Figure 4.6 shows the utilization if multiple photon maps are built in
parallel. Note that the average CPU utilization is much higher with VCM than with PT
when using the GPU traversal, even if no high-level parallelism is used. The reason for
the higher utilization is that shading is way more expensive during VCM. VCM benefits
less from the high level parallelism, because it already benefits a lot from the low level
parallelism during shading.

The number of rays within each tile decreases over time. That reduces the efficiency of
the traversal, especially on the GPU. A simple way to keep the ray count in every thread
as high as possible for as long as possible is to merge tiles. Whenever the ray count drops
below some threshold (50 percent has proven a decent value), another tile is acquired,
if available, and the primary rays from that tile are added to the current rays. However,
although this increases the number of rays and thus also reduces the calls to traversal,
coherence is not ideal. In our test scenes, we experienced only a small speed-up (less than
ten percent) from the merging. Merging only improved performance in combination with
small tiles and only few concurrent samples. For larger tiles and more samples, there was
no measurable change in performance.



36 Chapter 4 Implementation

0

0.2

0.4

0.6

0.8

1

(a) No Scheduling

0

0.2

0.4

0.6

0.8

1

(b) Tile Scheduler

0

0.2

0.4

0.6

0.8

1

(c) Queue Scheduler

Figure 4.9: Path Tracing using the GPU traversal utilizes the CPU only for around 50%, since
shading is quite cheap. The tile scheduler increases the utilization to 80%. With the queue sched-
uler, the utilization is fluctuating much more, but roughly the same on average.

The memory consumption when using the tile scheduler increases with the number of
threads, because each thread has to store all rays, states and hit points of the current tile.
Every thread has three ray queues available: the currently processed queue, a queue for
continuation rays and a queue for shadow rays. Thus, the memory usage is roughly three
times the number of rays within one tile, per thread.

Queue Scheduler

The queue scheduler was an attempt to optimize performance with the GPU traversal even
further. It is much more complex than the tile scheduler. Instead of having a fixed number
of threads, each rendering a part of the image, the queue scheduler maintains a pool of
queues, each of which can be either empty, in use, ready for shading, ready for traversal,
or ready for shadow ray traversal. Queues are traversed in the main thread and shading is
parallelized with TBB tasks.

The main benefit of this approach is that all rays are still managed in the main thread. This
allows for many potential improvements. We experimented with traversing all available
queues at once. Although that increased the GPU utilization, the increased time until more
work became available for shading outweighed all benefits. Furthermore, the memory
usage can be controlled by altering the number and size of the queues within the pool.

The queue based approach cannot be done entirely synchronization free, as the tile based
one could. Because we only use a limited number of queues, to prevent excessive mem-
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Figure 4.10: For VCM with the GPU traversal, the tile scheduler increases the CPU utilization
significantly. Again, the queue scheduler fluctuates more but performs similar on average. The
sudden drops to 25 percent (single core) are caused by the single threaded build of the photon map.
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Figure 4.11: Path Tracing with the tile scheduler and the CPU traversal achieves almost full
utilization of all cores (90-100%). The sudden drops in performance that occur when not using
any high-level parallelism are almost completely gone. The queue scheduler does not perform well
in combination with the CPU traversal.

ory usage, we often have to wait for queues to become available. This waiting proved a
bottleneck. Only by setting the number of queues large enough such that we never had to
wait for empty queues, could we achieve a level of performance that was comparable to
the tile scheduler.

The speed-up from using the queue scheduler in the Still Life scene is given in Table 4.2.
Overall, the performance with the GPU traversal is slightly worse than that from the tile
scheduler. In combination with the CPU traversal, the performance can even beworse than
not using any high-level parallelism at all. The queue scheduler consumes more memory
than the tile scheduler, thus the possible number of samples per frame is also more limited.
In combination with the Path Tracer, the queue scheduler achieved slightly faster frame
rates. This can be seen by comparing the speed-up with only one sample per frame. Still,
this minor increase in performance was not really worth the effort.

SPP Speed-Up GPU Speed-Up CPU
PT VCM PT VCM

1 1.45x 1.10x 1.04x 0.96x
4 1.57x 1.00x 1.10x 0.96x

Table 4.2: Speed-up when using the queue scheduler. The queue scheduler only works with the
GPU traversal. With the CPU traversal, it is sometimes even worse than not using any scheduler
at all.
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Figure 4.12: Using the tile scheduler for VCM with the CPU traversal greatly increases the time
spent at 100% utilization. The drops from building the photon map cannot be eliminated with high
level parallelism. In combination with VCM and the CPU traversal, the queue scheduler achieves
even worse utilization than not using any high-level parallelism.
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There are many potential improvements to the queue scheduler. However, they are very
difficult and time consuming to implement, and it is uncertain whether the results could
outperform the tile scheduler, at least in a CPU implementation.

4.3.4 Random Number Generator

Another minor improvement is to use a simpler random number generator than for instance
a Mersenne Twister. The random number generator we used, MWC64X [Tho], can be
implemented with only a few lines of code and requires only a small state (64 bits). Thus,
the generator is especially useful our implementation, since we associate every ray on
every path with its own random number generator state.

The MWC64X produces high quality random numbers, according to [Tho]. The conver-
gence rates compared to the Mersenne Twister form the C++ standard library were the
same in our experiments. Although the random number generator by itself is much sim-
pler and faster, the overall impact on performance was negligible.

One major benefit from this random number generator is that it can easily be used on the
GPU. Thus, in a future implementation in Impala, the same code for sampling can be used
on both the CPU and the GPU.



Chapter 5

Discussion

We conclude the thesis by presenting the performance and convergence results. We an-
alyze the results, determine the bottlenecks and propose improvements for future work.
The Path Tracer and the VCM implementation both achieve interactive frame rates. Our
analysis shows that images of decent quality can be rendered within five minutes, for all
our scenes, using VCM. Additionally, the performance scales well with the number of
cores.

5.1 Testing Setup

The computer used for testing was equipped with an Intel i5-4570, running at 3.20GHz,
16GB RAM, and a NVIDIA GeForce GTX 660 with 2GB of memory. Both the CPU and
the GPU are unfortunately quite old, thus an increase in performance is to be expected
when running on newer hardware.

Figure 5.1 shows the scenes that were used for testing. We only considered indoor scenes
in our tests. Outdoor scenes are usually quite large and dominated by direct illumination.
Thus, VCM is not really a good choice for them. Path Tracing is more efficient for this
kind of scenes.

The Still Life scene is the most complex. It was created for the purpose of this thesis as
a scene that is challenging for all algorithms, except VCM. The scene consists of 475K
polygons. It features a combination of diffuse, glossy, and specular materials with a small
number of textures. The scene is very challenging to render, because of the complex
caustics. The caustics that are seen through the empty wine glass, for instance, are created
by paths with at least ten specular and one diffuse bounce.

The Sponza scene is probably one of the most famous computer graphics test scenes. It
consists of 262K polygons, with many textures and bump maps. There are no specular or
glossy materials. The part of the scene that was used in our renderings is dominated by
indirect illumination, leaking through small gaps around the curtains. Of the algorithms
used in this thesis, BPT performs best in this scene.

Because shading performance does not depend on the geometric complexity, we also use
multiple variations of the Cornell Box scene for testing. Each variant clearly showcases
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a setting that is difficult for one or more algorithms, which gives interesting insights into
the shading performance.

Figure 5.1: The scenes used for testing. From top to bottom and left to right: Still Life, Sponza,
and Cornell Indirect, Original, Specular Close, Specular, and Water

5.2 Performance Results

The performance measured in rays per second and frames per second. Rays per second are
less useful for comparing Photon Mapping and VCM, because the performance of those
algorithms does not only depend on the number of rays. Since the resolution of all our
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images is approximately one megapixel, the number of frames per second allows for a
better comparison.

Table 5.1 summarizes the performance for all scenes and algorithms. As would be ex-
pected, Path Tracing is the fastest and VCM the slowest algorithm. The speed-up when
switching from the CPU traversal to the GPU traversal is also given in the table. The
following sections summarize the level of interactivity and the rendering times that were
achieved. Afterwards, we discuss the scalability of our implementation and the remaining
bottlenecks.

Scene Algo. Rays per Second FPS Speed-Up

Cornell Box pt 21.93 M 16.83 M 3.4 2.6 1.30x
Cornell Box bpt 13.38 M 11.65 M 0.8 0.8 1.09x
Cornell Box vcm 6.50 M 6.04 M 0.4 0.4 1.06x
Cornell Box ppm 6.57 M 5.94 M 1.1 1.0 1.09x

Cornell Specular pt 18.67 M 13.61 M 2.3 1.7 1.35x
Cornell Specular bpt 11.05 M 8.76 M 0.7 0.6 1.17x
Cornell Specular vcm 5.74 M 5.07 M 0.4 0.3 1.33x
Cornell Specular ppm 6.66 M 5.52 M 1.0 0.8 1.25x

Cornell Specular Close pt 20.91 M 14.13 M 2.3 1.6 1.44x
Cornell Specular Close bpt 13.29 M 9.89 M 1.0 0.7 1.43x
Cornell Specular Close vcm 6.75 M 5.81 M 0.5 0.4 1.25x
Cornell Specular Close ppm 8.28 M 6.61 M 1.1 0.9 1.22x

Cornell Indirect pt 24.43 M 19.03 M 3.8 3.0 1.26x
Cornell Indirect bpt 13.82 M 12.00 M 0.8 0.7 1.14x
Cornell Indirect vcm 6.50 M 6.08 M 0.3 0.3 1.07x
Cornell Indirect ppm 6.60 M 5.92 M 0.8 0.8 1.05x

Cornell Water pt 17.57 M 9.59 M 2.7 1.5 1.83x
Cornell Water bpt 11.83 M 6.52 M 0.8 0.4 2.00x
Cornell Water vcm 7.07 M 4.79 M 0.5 0.3 1.66x
Cornell Water ppm 7.02 M 4.49 M 0.9 0.6 1.50x

Sponza pt 11.58 M 4.69 M 1.4 0.6 2.33x
Sponza bpt 6.23 M 2.98 M 0.5 0.2 2.50x
Sponza vcm 4.21 M 2.39 M 0.3 0.2 1.50x
Sponza ppm 4.61 M 2.46 M 0.7 0.4 1.75x

Still Life pt 12.37 M 5.36 M 1.8 0.8 2.25x
Still Life bpt 9.55 M 5.01 M 0.7 0.4 1.75x
Still Life vcm 6.49 M 4.03 M 0.5 0.3 1.66x
Still Life ppm 7.42 M 4.59 M 0.7 0.5 1.44x

Table 5.1: Performancemeasurements across all scenes for all algorithms, using the tile scheduler.
The frames per second (FPS) speed-up from using the GPU traversal instead of the CPU traversal
is given in the rightmost column. Test were run with an i5-4570 @3.20GHz, 16GB RAM, and a
GTX 660 with 2GB.
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5.2.1 Interactivity

With both the CPU traversal and the GPU traversal, our implementation achieves frame
rates that are high enough to be considered interactive, especially when using the Path
Tracer. All our scenes were rendered at a resolution of roughly one megapixel. The Path
Tracer ran at up to four frames per second, whereas VCM ran at around 0.5 frames per
second. Considering that a single frame from VCM often looks much better than a single
frame rendered with the Path Tracer, this result is acceptable. Half a frame per second
is an acceptable amount of interactivity for quite a few applications. Newer hardware is
very likely to increase the performance significantly. Furthermore, simple techniques, like
reducing the resolution while moving the camera could be used to improve the frame rate.

5.2.2 Rendering Times

As could be seen in Table 5.1, Path Tracing is several times faster per sample, and per
ray, than all other algorithms. Thus, it is still the best choice for maximum interactivity.
However, the convergence curves in Figure 5.2 and 5.12 show that the other algorithms,
in particular VCM, are often a better choice for offline rendering. The convergence charts,
renderings, and structural similarity difference images in this chapter illustrate why imple-
menting VCM was worth the effort. The images were rendered for five minutes, and the
root-mean-squared error (RMSE) over time was computed. The differences in the RMSE
convergence rates, as well as the visible differences in the images, show that VCM is a
good choice, even in scenes without any specular materials.

In the Still Life scene, which was constructed to be difficult for all algorithms but VCM,
the results are quite clear. VCM converges quickly, while the RMSE for Path Tracing
is even increasing over time, due to the firefly noise from the caustics. The images after
five minutes from the Still Life scene are shown in Figure 5.8, along with their structural
similarity (SSIM) difference images. The image from VCM is already very close to the
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Figure 5.2: Root mean squared error (RMSE) within five minutes for Still Life and Sponza. VCM
outperforms all other algorithms in the Still Life scene. In the Sponza scene, VCM is not the best
algorithm, but it is performing well enough.
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(a) VCM (b) VCM SSIM (c) BPT (d) BPT SSIM

(e) PPM (f) PPM SSIM (g) PT (h) PT SSIM

Figure 5.3: The Sponza scene is handled well by all algorithms except for PPM. This is a good
proof that VCM is not only efficient in scenes with complex caustics and SDS paths.

reference. The caustics and most other parts of the image from BPT are also very con-
verged. However, the glass between the bottles shows very clearly that BPT struggles
with SDS paths: the refractions of the caustic are not visible, even after five minutes.
While, according to the SSIM values, the SDS paths in the Progressive Photon Mapping
(PPM) image are even further converged than in the VCM image, the glossy surfaces look
horrible and the diffuse surfaces and their reflections are also very noisy. The worst result
comes from Path Tracing. Here, the caustics consist only of firefly noise. Overall, the
only algorithm that can efficiently handle the Still Life scene is VCM.

The images from the Sponza scene after five minutes, shown in Figure 5.3, prove that
VCM is also efficient for scenes that do not contain any specular surfaces at all. PPM
is still extremely noisy after five minutes, and Path Tracing is also suffering from a lot
of noise in some areas. Although the RMSE of the image from VCM is higher than that
from Path Tracing, the noise is more evenly distributed and thus less objectionable. Hence,
VCM performs only slightly worse than BPT.

The images and RMSE curves for the Cornell Box scenes are at the end of the chapter.
According to the RMSE over time, VCM is not always the best algorithm for the Cornell
Box scenes. Yet, the difference to the best algorithms for those scenes is not very big.

Overall, VCM seems like a decent choice for rendering arbitrary scenes. Although for
many scenes there are algorithms that converge slightly faster than VCM, VCM is never
much slower than the best algorithm. In contrast, for scenes where VCM performs best,
all other algorithms perform significantly worse.



44 Chapter 5 Discussion

5.2.3 Scalability

The combination of high-level parallelism from the schedulers and low-level parallelism
from processing rays and hit points in parallel scales nicely. Curves for using up to four
cores with the CPU traversal and with the GPU traversal are given in Figure 5.4 and Figure
5.5 respectively. With the CPU traversal, both the traversal and the shading benefit from
the additional CPU cores. With the GPU traversal, however, the scaling is significantly
worse, because additional CPU cores only improve the performance of the shading part.
For scenes where connecting and merging vertices happens often, that is, scenes with
only a few specular materials, we still experience a very good scaling for VCM and BPT,
because shading is very expensive in such scenes.
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Figure 5.4: Scaling curves for Sponza (left) and Still Life (right), using the CPU traversal. Because
both, traversal and shading, are running on the CPU, all algorithms scale nicely.
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Figure 5.5: Scaling curves for Sponza (left) and Still Life (right), using the GPU traversal. Traver-
sal does not benefit from additional CPU cores. Thus, Path Tracing performance does not scale
well. Especially in scenes with little or no specular surfaces, the shading costs for VCM and BPT
are very high. Thus, the increase in performance from additional CPU cores is almost as big as
with the CPU traversal.

5.2.4 Bottlenecks and Possible Improvements

The amount of time spent shading, traversing, and building and searching the photon map
was measured with the CPU traversal. The results are visualized in Figure 5.6 for the
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Sponza and Still Life scenes. Path Tracing on one hand is mostly dominated by the traver-
sal. Thus, Path Tracing benefits the most from using the GPU traversal. For VCM on the
other hand, traversal makes up for less than 50% of the total rendering time. The shading
is a bottleneck for VCM performance.
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Figure 5.6: The figures show the amount of time, in percent, that was spent shading, traversing
and photon mapping. Measurements where made using the CPU traversal. Whereas Path Tracing
is dominated by traversal times, Bidirectional Path Tracing and VCM spend significantly more
time in the shading code. The Photon Mapping step is more expensive if fewer specular materials
are present.

Figure 5.7 shows how the performance (in pixel samples per second) changes for different
scenes. For Path Tracing, the results are closely related to the geometrical complexity, as
would be expected. The other algorithms, however, have very interesting results. With
VCM, the Cornell Water scene is actually faster to render than the simple diffuse Cornell
Box, although it consists of more than 1000 times the number of polygons. The reason
for this phenomenon is that connecting and merging vertices makes no sense on specular
surfaces and is thus not performed. In particular, connecting is very slow because it suffers
from cache misses. The slow-down from merging is slightly smaller. Hence, the results
for Progressive Photon Mapping are somewhat closer to those from Path Tracing.

The results show that the cache misses from random accesses to the light vertex cache,
when connecting and merging vertices, are indeed a problem. Reducing these cache
misses could increase the performance significantly. It might be possible to randomly
shuffle the contents of the light vertex cache in a way, that allows neighboring light ver-
tices to be used for connecting, without introducing bias. Another option would be to alter
the probabilities for choosing vertices in a way that they favor nearby vertices.

Currently, the hit points are processed in one big for loop. This loop computes the contri-
butions from direct illumination and from connecting and merging vertices, and it samples
a direction for the continuation ray. Splitting this loop into parts would increase the proba-
bility that the samememory is used at the same time, and thus increase cache performance.
Whether or not this will have a (positive) impact on performance remains to be seen.
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Figure 5.7: The performance in terms of samples per second with the GPU traversal (top) and
the CPU traversal (bottom) does not depend on the geometric complexity much, except with Path
Tracing. That also proves that the shading code is the bottleneck for BPT, VCM and PPM.

5.3 Future Work

Apart from the aforementioned possible improvements regarding cache performance, there
are also some other interesting topics for future work.

Using SIMD for the shading part could improve performance significantly ([Kar+10] for
instance reported a speed-up factor of four with SSE). However, implementing SIMD by
hand is very cumbersome and the goal of AnyDSL is to simplify that. Hence, it was left
for future work.

Traversal performance in our implementation could benefit from sorting rays to increase
coherence, especially on the GPU. Also, sorting hit points by material might increase
performance, at least if using SIMD shading. The performance increases reported by
others for sorting rays and hits [Eis+13] [LKA13] show that this would be a worthwhile
direction for future work.

Although photon mapping makes up only around 15% of the rendering time in our scenes,
it might be interesting to see howmuch a better photonmapping step could improve perfor-
mance. For instance, by using the (rectified) stochastic hash grid, described in [Dav+14].
Building the photon maps for multiple iterations in parallel yielded a speed-up of up to
50%. Parallelizing the build on a per photon basis will likely improve this speed-up further
and also increase the frame rates that can be achieved with VCM.

Achieving high performance for production scale scenes, maybe even with textures loaded
over the network, would also be very interesting. Huge textures and models that cannot
be kept in memory require an intelligent streaming approach. Finding an approach that
fits well into the parallel design used by our renderer could be very interesting.

Apart from performance improvements, it is of course also desirable to extend the set of
supported features. More complex materials should be easy enough to implement with
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(c) BPT (d) BPT SSIM
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Figure 5.8: The Structural Similarity (SSIM) values on the right show very well where the difficul-
ties of the individual algorithms lie. VCM handles the scene very well overall. BPT struggles with
SDS paths, PPM has problems with glossy and diffuse surfaces, and PT cannot render the caustics
efficiently.
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our flexible material system. Other features, like volume rendering, still pose a problem
for high performance implementations and may require more research.

5.4 Conclusion

In this thesis we presented a parallel implementation of a renderer that achieved interactive
frame rates for a variety of scenes, by making efficient use of a fast traversal library. By
implementing a robust rendering algorithm, VCM, we made sure that the renderer will be
able to handle a large variety of scenes. Interactive frame rates have been achieved with
Path Tracing, and the VCM implementation is also very close to being interactive on our
(quite old) hardware. High quality images can be rendered in less than five minutes for
all test scenes, using VCM.

Different approaches to make efficient use of the traversal have been tried and compared.
With carefully designed scheduling it was possible, to make the most use out of the GPU
traversal. Even though data transfer between the CPU and the GPU is very costly, we still
experience a speed-up factor of up to three, when switching from the CPU traversal to the
GPU. This would not have been possible without a technique to keep the CPU occupied
while waiting for the results from the GPU.

The design of our renderer can also be mapped to a GPU implementation. Thus, it will
be a good reference when implementing a renderer in Impala that will run on both the
GPU and the CPU. By making sure that all our high-level design choices and most of the
low-level details, like the random number generator, map nicely to the GPU as well, the
need for special case code in such a multi-platform implementation is greatly reduced.

Our results showed that it is worthwhile to use VCM for interactive rendering as well as
for offline rendering. Using a robust algorithm ensures that the convergence rate is good
for most scenes. Path Tracing, for instance, is significantly simpler to implement and to
parallelize, and achieves faster frame rates. Thus, using Path Tracing in an interactive
renderer is in some cases a better choice, especially if there are only few specular surfaces
present in the scenes. Path Tracing and VCM both benefit from the parallelization scheme
and other optimizations that were described in this thesis.



5.4 Conclusion 49

(a) VCM (b) VCM SSIM (c) BPT (d) BPT SSIM

(e) PPM (f) PPM SSIM (g) PT (h) PT SSIM

(i) VCM (j) VCM SSIM (k) BPT (l) BPT SSIM

(m) PPM (n) PPM SSIM (o) PT (p) PT SSIM

Figure 5.9: Images of the diffuse Cornell Box scenes from all algorithms after five minutes.
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(a) VCM (b) VCM SSIM (c) BPT (d) BPT SSIM

(e) PPM (f) PPM SSIM (g) PT (h) PT SSIM

(i) VCM (j) VCM SSIM (k) BPT (l) BPT SSIM

(m) PPM (n) PPM SSIM (o) PT (p) PT SSIM

Figure 5.10: Images of the specular Cornell scenes from all algorithms after five minutes.
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(a) VCM (b) VCM SSIM (c) BPT (d) BPT SSIM

(e) PPM (f) PPM SSIM (g) PT (h) PT SSIM

Figure 5.11: Images of the Cornell Water scene from all algorithms after five minutes.
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Figure 5.12: The root mean squared error (RMSE) over time in the cornell box scenes also con-
firms that VCM is a good algorithm on average.
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