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Fig. 1. Sony Imageworks has been using path tracing in production for over a decade: (a) Monster House (©2006 Columbia Pictures Industries, Inc. All rights
reserved); (b) Men in Black III (©2012 Columbia Pictures Industries, Inc. All Rights Reserved.) (c) Smurfs: The Lost Village (©2017 Columbia Pictures Industries,
Inc. and Sony Pictures Animation Inc. All rights reserved.)

Sony Imageworks’ implementation of the Arnold renderer is a fork of the
commercial product of the same name, which has evolved independently
since around 2009. This paper focuses on the design choices that are unique
to this version and have tailored the renderer to the speci�c requirements of
�lm rendering at our studio. We detail our approach to subdivision surface
tessellation, hair rendering, sampling and variance reduction techniques,
as well as a description of our open source texturing and shading language
components. We also discuss some ideas we once implemented but have
since discarded to highlight the evolution of the software over the years.
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1 INTRODUCTION

1.1 History
Sony Imageworks �rst experimented with path tracing during the
production of the �lm Monster House. The creative vision for the
�lm called for mimicking the look of stop motion miniatures, a
look which had already been successfully explored in early shorts
rendered by the Arnold renderer [Jensen et al. 2001]. Despite some
limitations that were worked around for the �lm, the simplicity
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and robustness of path tracing indicated to the studio there was
potential to revisit the basic architecture of a production renderer
which had not evolved much since the seminal Reyes paper [Cook
et al. 1987].

After an initial period of co-development with Solid Angle, we
decided to pursue the evolution of the Arnold renderer indepen-
dently from the commercially available product. This motivation
is twofold. The �rst is simply pragmatic: software development in
service of �lm production must be responsive to tight deadlines
(less the �lm release date than internal deadlines determined by
the production schedule). As an example, when we implemented
heterogeneous volume rendering we did so knowing that it would
be used in a particular sequence of a �lm (see Figure 1), and had to
re�ne the implementation as artists were making use of our early
prototype. Such rapid iteration is particularly problematic when
these decisions impact API and ABI compatibility which commercial
software must be beholden to on much longer time frames. The
second motivation to fork from the commercial project is more
strategic: by tailoring the renderer solely towards a single user base,
we can make assumptions that may not be valid for all domains
or all work�ows. By contrast, a commercial product must retain
some amount of �exibility to di�erent ways of working and cannot
optimize with only a single use case in mind.

While our renderer and its commercial sibling share a common
ancestry, the simple fact that development priorities changed the
timeline around various code refactors have rendered the codebases
structurally incompatible despite many shared concepts.

This paper describes the current state of our system, particularly
focusing on areas where we have diverged from the system described
in the companion paper [Georgiev et al. 2018]. We will also catalog
some of the lessons learned by giving examples of features we
removed from our system.
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1.2 Design Principles
The most important guiding principle in the design of our system
has been simplicity. For the artist, this means removing as many
unnecessary choices as possible, to let them focus on the creative
choices they must make. For us as software developers, this has
meant intentionally minimizing our feature set to the bare necessi-
ties, aggressively removing unused experimental code when it falls
out of favor, and minimizing code duplication.

Perhaps as a direct consequence of this goal, we have always
focused on ray tracing as the only building block in our system.
Because the natural expression of geometric optics leads one to
think in terms of rays of light bouncing around the scene, we felt
all approximate representations of such e�ects (shadow maps, re-
�ection maps, etc.) were simply removing the artist from what they
really wanted to express.

1.3 System Overview
We divide the architecture of our system into three main areas to
highlight how we meet the challenge of modern feature �lm pro-
duction rendering: geometry, shading and integration (see Figure 2).

Geometry. The �rst and most important design choice in our ren-
derer has been to focus on in-core ray tracing of massive scenes. The
natural expression of path tracing leads to incoherent ray queries
that can visit any part of the scene in random order. Observing
that the amount of memory available on a modern workstation can
comfortably store several hundred million polygons in RAM, we
explicitly craft our data structures to represent as much unique de-
tail as possible in as few bytes as possible. We also heavily leverage
instancing as its implementation is well suited to ray tracing but
also closely matches how we author large environments by re-using
existing models. This design choice also has the bene�t of keeping
the geometric subsystem orthogonal to the rest of the system.

Shading. The role of the shading system is to e�ciently manage
large quantities of texture data (terabytes of texture data per frame
is not uncommon) and e�ciently execute shading networks that
describe the basic material properties to the renderer. Unlike older
rendering architectures, shaders are only able to specify the BSDF
per shading point rather than be responsible for its evaluation.

Integration. Turning shaded points into pixel colors is the role
of the integrator which implements the path tracing algorithm it-
self. While Monte Carlo methods are conceptually simple, judicious
application of (multiple) importance sampling for all integrals and
careful attention to the properties of sampling patterns are critical
to overall e�ciency.

2 GEOMETRY
Since the early days of computer graphics, a fair amount of stan-
dardization has occurred leading most surfaces to be rendered as
subdivision surfaces [Catmull and Clark 1978], most hair and fur
as b-splines, and particulate e�ects as either volumes [Wrenninge
2009] or collection of spheres.

Because we have chosen to focus on in-core tracing of geometry,
we put a special emphasis on compressing geometry in memory.

2.1 Subdivision Surfaces
Displaced subdivision surfaces are probably the most common geo-
metric primitive at Sony Imageworks. Therefore, we needed a fast
and highly parallel subdivision engine to minimize time-to-�rst
pixel as well as a compact storage representation of highly subdi-
vided surfaces to reduce memory consumption. We opted to focus
on tessellation as opposed to native ray tracing of patches for the
simple reason that our geometric models are usually quite dense
which makes storing higher-order patches more expensive than
simply storing triangles. Moreover, methods based on higher-order
patches typically fail in the presence of displacements requiring
extra geometric representations and going against our principle
of code simplicity and orthogonality. Our system also focuses on
up-front tessellation which greatly simpli�es the implementation
compared to deferred or on-demand systems that try to interleave
tessellation and rendering. We further motivate this choice in Sec-
tion 7.4.

A number of criteria dictated the approach we take to subdivi-
sion. Firstly, the subdivision engine must be able to handle arbitrary
n-gons. Even though quads are the primary modeling primitive at
the facility, other polygons do creep in to the system for a variety
of reasons. Secondly, we chose to ignore support for weight driven
creases to maximize interoperability between software packages.
We anticipate that as the rules of the OpenSubdiv library become
more widely supported, we may need to revisit this decision, but
ignoring this requirement signi�cantly simpli�es both the imple-
mentation and the data transport across the production pipeline.
While creases can make models slightly more lightweight when used
optimally, our modelers are quite adept at explicitly adding tight
bevels to mimic the in�uence of creases without needing special
rules in the subdivision code itself. Thirdly, we wanted a patch-based
subdivision engine where patches could be processed in parallel
independent of their neighbors. With these criteria in mind, we
chose to evaluate all top-level regular quads with bicubic b-spline
patches, and all “irregular” top-level n-gons with n Gregory Patches
(one patch per sub-quad) with Loop’s method [Loop et al. 2009].
Patches are processed in parallel independently of each other, and
we control the writing of shared vertices by prioritizing based on
patch ID number.

Subdivision is parallelized �rst by treating multiple objects in
parallel and then within objects by processing patches in parallel.
This is further discussed in Section 6.5.

2.1.1 Adaptive tessellation. By default, objects are tessellated
adaptively based on screen-space heuristics.

In the case of non-instanced objects, we compute edge rates so
that the following metrics are met: (1) patches with displacement are
tessellated until some target number of polygons per pixel is reached
– the default is four which roughly equates to a �nal primitive with
a 1

2 pixel edge length; and (2) patches without displacement are
tessellated until a primitive’s maximum deviation from the true
limit surface, as measured in pixels, is reached. The last default is 1

3 .
Faces which lie o�-screen undergo no subdivision.

Skipping o�-screen faces entirely may seem like a surprising
choice, as one can easily envision cases in which o�-screen geometry
casts prominent shadows that could reveal the approximation. This
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Fig. 2. Still frames from some recent productions. Modern film production rendering frequently involves full frame computer generated imagery of complex
environments and characters. Credits from top-le� to bo�om-right: (a) The Amazing Spiderman 2 ©Columbia Pictures; (b) Ghostbusters ©Columbia Pictures; (c)
Edge of Tomorrow ©Warner Bros. Pictures; (d) Storks ©Warner Animation Group.

is a great example of where the needs of a �lm production renderer
di�er from that of a general purpose system serving more industries.
At our studio, our input meshes are already quite dense, we rarely
use very sharp shadows and set dressing typically will remove as
much geometry outside the camera’s view as possible to simplify the
task of other departments. Taken together, this means that the cases
that would cause our approximation to be visible never come up.
We should note that we do allow 5% of padding beyond the image
resolution before considering a patch o�-screen, to prevent slow
pans from revealing the transition between detailed tessellation and
no tessellation. In the case of rapid camera pans, any transitions are
masked by extreme motion blur and we have not experienced any
artifacts from this situation either.

Instanced objects pose a particular di�culty to adaptive subdivi-
sion. Some instances might lie close to the camera requiring high
levels of tessellation, whereas others might lie far in the distance,
or even o�-screen, requiring little to no subdivision. We attempt
to �nd the “worst case” for each face among all the instances and
tessellate it appropriately. The general idea is to estimate the area of
a pixel projected into each instance’s object-space. This object-level
“tolerance” is used to approximate suitable edge-length or limit sur-
face deviation measurements for the displaced, and non-displaced,
cases respectively. Because computing this object-space error on
a per-face basis for each instance can be a prohibitively expensive

operation we use the following simpli�cation which works well in
practice. We �rst set the edge-rates for all faces in the reference ob-
ject to zero (ie. no tessellation). Then for each instance, we analyze
its position in screen-space and process the faces as follows: if the
instance lies fully in-camera, then compute an object-level tolerance
based on the instance’s bounding box and update all the edge-rates
if higher levels of tessellation are required than what is currently
stored; if the instance lies fully o�-camera, then do nothing; if the
instance straddles the edge of the screen, then analyze an object-
level tolerance for each on-screen face and update accordingly. This
per-face analysis can result in signi�cant memory savings as shown
in Table 1.

2.1.2 Compact storage. Another goal of our subdivision engine
was to �nd a compact representation for highly-tessellated objects.
When tessellating patches, the renderer always outputsn×m patches
of quads, and we are careful to arrange the vertices with an implicit
ordering so that no connectivity information is needed. Connec-
tivity is only required for stitching triangles which join patches
with di�erent edge-rates. We are careful to store shared edges and
vertices exactly once as for most of the scene the tessellation rate
per patch can be quite low (1×1 and 2×2 patches are quite common).
As the tessellation rates increase in an object, the relative cost of
connectivity information decreases. This is illustrated in Table 2.
We allow arbitrary edge rates (not just powers of two) which means
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Fig. 3. A collection of production test scenes to evaluate tessellation of subdivision surfaces. Credits from top-le� to bo�om-right: (a) The Emoji Movie ©Sony
Pictures Animation; (b,c) The Smurfs Movie ©Sony Pictures Animation; (d) Smallfoot ©Warner Animation Group; (e,f,g) Alice Through the Looking Glass
©Disney; (h) The Meg ©Warner Bros. Pictures.

Scene Bounding Box Per-Patch
Mem Unique tris Mem Unique tris Savings

CG Classroom 3.49GB 82.8M 2.98GB 68.0M 15%
CG Garden 22.2GB 658.5M 4.31GB 123.0M 80%
CG Forest 8.89GB 291.6M 1.14GB 28.1M 87%
CG Hostel 3.84GB 117.9M 3.84GB 117.9M 0%
VFX Gears 173.7GB 6.04B 9.92GB 272.1M 94%
VFX Castle 17.3GB 573.4M 7.41GB 225.1M 57%

VFX Coral Reef * * 29.0GB 755.8M *
VFX Garden 20.7GB 674.6M 11.1GB 330.0M 46%

Table 1. Comparing the results of our per-patch analysis versus bounding
box analysis for subdividing instances for a variety of scenes (see Figure 3).
The coral reef scene runs out of memory on a 256GB machine using bounding
box analysis. The memory field includes all geometric data, connectivity
information, per-vertex shading data, and BVH storage.

that a naive implementation of grid indexing would require modulo
and division operations. We optimize this step with multiplicative
inverses as these operations remain relatively slow even on modern
CPUs. We do not attempt to emulate the fractional tessellation ap-
proach supported in some hardware rendering APIs [Moreton 2001].
Fractional tessellation requires rounding to either odd or even rates,
which appeared to reduce the adaptivity slightly in our experiments.

2.1.3 Displacement. Displacement occurs during the subdivision
process. Interior vertices are displaced a single time whereas shared
vertices are displaced n times, where n is the number of faces with
which that vertex is shared, and averaged due to the ambiguity
introduced by having a vertex attached to di�erent uniform (or per-
face) user-data. Displacement shading di�erentials, such as dP

du and
dP
dv , are determined by the tessellation rates so that texture look-ups
are �ltered appropriately.

Scene Input Final Regular Storage Compact Storage
patches tris Mem bytes/tri Mem. bytes/tri

CG Classroom 7.5M 68.0M 3.34GB 52.72 2.98GB 47.02
CG Garden 2.2M 123.0M 5.40GB 47.11 4.31GB 37.58
CG Forest 7.4M 28.1M 1.18GB 44.95 1.14GB 43.48
CG Hostel 29.2M 117.9M 4.14GB 37.69 3.84GB 35.01
VFX Gears 43.5M 272.1M 11.38GB 44.93 9.92GB 39.13
VFX Castle 26.8M 225.1M 8.76GB 41.80 7.41GB 35.34

VFX Coral Reef 25.9M 755.8M 35.74GB 50.79 29.0GB 41.24
VFX Garden 56.7M 330.0M 12.84GB 41.79 11.1GB 36.27

Table 2. Comparing a straightforward packing of triangle meshes against
our more compact storage of patch tessellations. The exact amount of
savings varies depending on the amount of per vertex data needed, the
presence of motion blur as well as the exact dicing rates.

2.2 Curves
The next most common geometric primitive is for hair and fur. We
represent these as b-spline cubic curves. The b-spline basis is par-
ticularly advantageous because most vertices are shared between
segments when producing long strands. Therefore a curve of n cubic
segments only requires n + 3 vertices. In contrast other equivalent
bases like beziers require at least 3n + 1 vertices. This simple ob-
servation already dramatically reduces the memory requirements
compared to more naive implementations.

Our initial implementation of the ray intersection test for curves
followed the work of Nakamaru and Ohno [2002]. However, moti-
vated by the typical segment densities we observed in practice, we
have found that hardcoding the division of segments into 8 linear
pieces is faster, is more amenable to vectorization and does not
introduce any visual artifacts [Woop et al. 2014].

Despite this optimization, the intersection test for curves has
a much longer setup than for triangles. Hair strands can also fre-
quently end up oriented diagonally, in which case a simple axis
aligned bounding box is not su�cient to isolate segments in the
BVH, forcing even more primitive tests to be done. This issue can be
remedied by extending the classic axis aligned BVH with oriented

ACM Transactions on Graphics, Vol. 9, No. 4, Article 39. Publication date: March 2017.



Sony Pictures Imageworks Arnold • 39:5

bounds [Woop et al. 2014], but this requires a substantially more
complex build process, and more code only for a single primitive
type. We instead use a much simpler solution, which is to simply
pack oriented bounds in the leaves of a regular BVH and test several
of them in parallel. This test is comparable in cost to traversing one
level of a BVH, and actually allows reducing the depth of the BVH as
it becomes more feasible to intersect multiple curves at once. Since
curves are typically quite thin, in practice only one or two segments
per BVH leaf will need to be fully intersection tested, with most
segments getting rejected early.

From a historical perspective, e�cient ray tracing of curves was
one of the key advancements that convinced us path tracing was
viable for �lm production.

2.3 Particles
Particles are most frequently used to represent media that isn’t quite
dense enough or slightly too coarse to be treated as a volume, such as
sand, snow or sparks. Ray tracing of spheres is very well understood,
however to support e�cient ray tracing of many millions of spheres
we use a similar mechanism to the curves and pack the particles
directly into BVH leaves in small clusters so they can be intersection
tested with vector instructions.

Because particles are typically very small (close to subpixel in
size), we had to pay special attention to the numerical properties
of the sphere intersection test. Simply using a robust quadratic
solver [Goldberg 1991] is not su�cient because the precision of the
polynomial coe�cients themselves is an issue, particularly the con-
stant term c = ∆P2−r2 which is subject to catastrophic cancellation
when ∆P2 � r2 (the sphere is distant relative to its radius).

Accurate shading of emissive particles (common for sparks or �y-
away embers) has required us to extend our shading data to support
motion blur. Each particle will have changing temperature data (or
simply a pre-determined color) attached on every sub-frame. For
visually pleasing motion blurred trails, this data must be interpolated
on every shade according to the current ray time. Prior to this, artists
would frequently convert said curves into small line segments which
did not produce the desired e�ect when combined with camera
motion blur or non-uniform shutters.

2.4 Volumes
Finally, volumes are represented as sparse two level grids [Wren-
ninge 2009]. We opted for this representation over the more sophis-
ticated OpenVDB structure for ease of implementation and also
because we found that for dense simulations, the extra sparsity af-
forded by OpenVDB does not pay o�. Deformation motion blur in
volumes is supported through velocity �elds [Kim and Ko 2007]. We
look forward to supporting temporal volumes [Wrenninge 2016],
implemented in version 2.0 of the Field3D library, as a more robust
solution.

As volumes interact di�erently than surfaces with light, it is
important to capture the interval along the ray rather than a single
intersection point. While there are stochastic intersection schemes
that can unify the processing of surfaces and volumes [Morley
et al. 2006], doing so couples the ray intersection logic with the
light integration strategy. By deferring decisions about where to
sample volumes to later stages, we retain �exibility over the types of

sampling techniques we can implement. That being said, we believe
the need to e�ciently handle higher-order bounces [Kutz. et al.
2017] may require us to reevaluate this design decision in the near
future.

2.5 Instancing
All geometric primitives in the renderer can be instanced to quickly
replicate identical models. This feature is heavily utilized at our
studio and is an integral part of how we can e�ciently model very
large environments through re-use of simple components.

Implementing instancing in a ray tracer is straightforward and
memory e�cient as only rays need to be transformed on the �y
rather than triangles. Aside from the special considerations to adap-
tive tessellation described in Section 2.1.1, the only perhaps sur-
prising design decision we have made is to focus exclusively on
single-level instancing. This means that in our renderer, an instance
may only refer to a single model, never a collection of models. This
decision is directly related to how scenes are organized within our
pipeline. We found it was very common for our scenegraphs to be
structured into logical rather than spatial groupings that, if re�ected
in the acceleration structures, led to poor performance. By forcing
the entire scene to be �attened to two levels, we greatly reduce these
performance pitfalls and also greatly simplify the implementation.

We note that multi-level instancing is obviously more e�cient in
some scenarios. For example an object comprised of 100 meshes will
require creating 100 instances each time it needs to be duplicated in
our system. So far, we have been able to live with this overhead by
minimizing the size of a single instance.

2.6 Acceleration Structures
Our system relies exclusively on bounding volume hierarchies [Kay
and Kajiya 1986] for accelerating ray intersection tests among many
primitives. Several factors motivate this choice:

• ease of implementation: construction and traversal are con-
ceptually very simple, meaning that even a high perfor-
mance implementation can still be easily understood

• easy to extend to motion blur: our implementation has a
uni�ed builder for both static and motion blur cases

• predictable memory usage: because each primitive is re-
ferred to only once, the storage cost is linear

• each primitive is only tested once: this greatly simpli�es
the handling of transparency in shadows because shading
operations can be performed immediately during traversal

The later point is worth elaborating on. While BVHs have been
extended to include spatial splits [Stich et al. 2009], we have ex-
plicitly chosen not to adopt this technique to retain the property
that each primitive is stored exactly once. Because our scenes are
mostly composed of subpixel sized triangles, we have not found the
splitting of large triangles to be an important requirement for good
performance.

The construction of the BVHs for the scene happens in parallel
before rendering begins. Similar to subdivision, we start by building
BVHs for di�erent objects in parallel before letting multiple threads
join a single build process for leftover objects. This is further detailed
in Section 6.5.
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The biggest weakness of BVHs are that they can degenerate to
the performance of a linear list in situations where objects are
highly overlapped. We do occasionally run into this problem. In one
extreme example, a degenerate simulation collapsed a portion of
a heavy triangle mesh in such a way that several million triangles
were jumbled into a tiny region of space, leading a single pixel being
more expensive than rest of the frame. A similar e�ect is sometimes
seen at the object level of the hierarchy, though usually to a much
lesser extent. We look forward to experimenting with re-braiding
as a solution to this problem [Benthin et al. 2017].

2.7 Motion Blur
As mentioned above, BVHs are one of the few acceleration structures
that naturally extend to motion blur. Instead of a single bounding
box per level in the tree, we store a pair of boxes each bounding an
extremity of the linear motion path. Interpolating this pair during
traversal produces tight bounds which leads to e�cient traversal
quite comparable to tracing through non-motion blurred geometry.
For multi-segment motion blur we simply create multiple trees, each
covering a consecutive set of keys.

For most animated feature �lms we perform motion blur “back-
wards” (from the previous frame to the current frame) resulting in
mostly single segment blur. However in the case of live action visual
e�ects, matchmoved geometry is keyed from the current frame,
making “centered” motion blur match more naturally to the plate.
This results in 3 keys of motion (or two segments) corresponding to
the previous, current and next frames. Because this is a very com-
mon case at our studio, we have also specialized this case to only
require a single tree. This saves a substantial amount of memory
and acceleration structure build time compared to building a tree
per segment.

Recent work [Woop et al. 2017] has focused on optimizing motion
blurred acceleration structures beyond the simple cases discussed
so far. This is a very promising area of future improvement. When a
single object requires a large number of motion segments, we must
conservatively either increase the number of keys of the top level
acceleration structure, or revert to non-motion blurred acceleration
structures where a single box encompasses all times. So far, however,
the relative rarity of multi-segment blur has not made this a high
priority.

3 SHADING
Shading is computation of the material properties of each point on a
surface or light source, or in a volume. In our conception, it does not
encompass the gathering and integration of light, but merely the
description of the scattering properties of the surface, which may
include any patterning that causes the scattering or emission prop-
erties of a surface or volume to be spatially varying. Displacement
shading [Cook 1984] is also supported for modi�cation of the shape
of geometric primitives (see Section 2.1.3), but the remainder of this
section will focus on shading to determine material properties.

3.1 Shading Language: OSL
Rather than hardcoding a strictly built-in set of functionality, our
renderer supports user-extensible, programmable shading. We de-
signed and implemented our own domain-speci�c language for this
purpose: Open Shading Language, or OSL [Gritz et al. 2010]. OSL is
syntactically related to prior shading languages such as the Render-
Man Shading Language [Hanrahan and Lawson 1990] and its many
descendants, but makes a number of design improvements to meet
the speci�c needs of a modern, physically-based ray tracer.

3.1.1 Shader groups. OSL materials are shader groups in the
form of a directed acyclic graph. Breaking up materials into smaller
chunks promotes re-use of carefully written components, and lets
end-users compose and extend basic networks in a very �exible
manner. The nodes of the graph are individual separately-compiled
shaders, and the edges are connections from the outputs of shader
nodes to input parameters of other shader nodes. A shader input
that is not connected to an upstream layer may instead have a
runtime-determined instance parameter value, or be an interpolated
geometric variable (such as vertex colors or normals or a positional
lookup of a volumetric �eld texture), or a default determined by
the shader. The individual shader nodes are authored and compiled
ahead of time, but the full speci�cation of the shader graph that
describes a material — including the instance parameter values and
edge connections of the graph — may be speci�ed at runtime.

The easy composability of the shader nodes leads to material
networks that can be extremely complex in practice, often totaling
into the dozens to hundreds of shader nodes per material, and there
may be hundreds to thousands of materials in a scene.

3.1.2 Runtime optimization. To tame this complexity, OSL im-
plements an aggressive runtime optimization after the shader graph
is fully speci�ed. Full knowledge of the instance values and con-
nections allows for many optimizations that would not be possible
when examining the nodes individually prior to rendering. To begin,
all parameters taking instance values are from this point treated as
constants (they will not change during the rendering of the frame),
and the shaders undergo a series of compiler optimizations such
as constant folding (e.g., ConstA × ConstB ⇒ const, A + 0 ⇒ A),
transformations of if/else statements with foldable conditions
into unconditional execution or eliminating the “dead code,” track-
ing which variables alias each other (e.g., if A and B can be deduced
to hold the same value, even if not a known constant, then A-B can
be replaced with 0).

Optimizations are propagated across the connections between
nodes so that, for example, if an upstream node can be found to
store a constant in an output, the separate node that is the recipient
of that output can treat its corresponding input as a constant. Dead
code elimination also takes into consideration connections — an
unconnected output (or an output connected to a downstream node
that, after optimization, never needs that input) can be eliminated,
including all calculations that lead exclusively to computing the
unused output. In the course of optimization, some nodes in the
graph optimize away completely and are replaced by a direct con-
nection from their upstream to downstream nodes. In the example
of Figure 4, a pre-optimized total of 2991 shader groups totaling 280
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million instructions and using 161 million symbols (including tempo-
raries) was reduced by runtime optimization to a total of 2.7 million
operations and 1.9 million symbols (a 99% reduction). We have found
that our complex OSL shader networks execute substantially faster
than the equivalent networks expressed as separately-compiled C++
functions.

3.1.3 Just-In-Time Compilation. After the “runtime optimiza-
tion” described above is completed, we use the LLVM Compiler
Framework [Lattner and Adve 2004] for runtime JIT compilation
of our optimized shader network into executable machine code for
x86_64.1 After generating LLVM intermediate representation, we
also perform various LLVM optimization passes on the code before
�nal JIT compilation to machine code.

The �nal code that we compile is constructed to implement lazy
evaluation of the shader nodes within a material network; execution
begins with the “root” node (typically the layer at the end, where the
�nal BSDF closure is assembled), and upstream nodes are executed
the �rst time one of their outputs is actually needed (thus, whole
sections of the graph may not execute on every point, depending
on dynamic conditions). Additionally, since we are generating the
�nal machine code at runtime and have the opportunity to inject
extra code automatically, a number of debugging modes are possible,
such as automatically detecting any computation that leads to a NaN
value, use of uninitialized variables, or range checking on arrays,
with an error message that pinpoints the speci�c line in the shader
source code where the error occurred.

3.2 Derivatives
In order to �lter texture lookups (as well as aid in frequency clamp-
ing and other anti-aliasing techniques for procedural texturing), it
is important to be able to have correct screen-space derivatives of
any numeric quantities computed in the shader for texture lookup
positions. We use the method of dual arithmetic [Piponi 2004] for
automatic di�erentiation.2 In summary, a numeric variable carries
not only its value v , but also two in�nitesimals representing ∂v/∂x
and ∂v/∂y, and all the usual math operators and functions (includ-
ing everything in OSL’s standard library) are overloaded with a
version that supports derivatives. OSL performs a data �ow analy-
sis to determine the set of symbols that actually need di�erentials.
Only a few operations need to know derivatives (such as the coor-
dinate inputs to texture() calls), so only computations that lead
ultimately to these “derivative sinks” need to compute derivatives.
In practice, this analysis causes only between 5–10% of symbols
to carry and compute derivatives, the remainder being ordinary
scalar operations. Because this is all handled as part of the code
generation at JIT time, they are not part of the OSL shader source
code and there is never any need for shader authors to be aware of
how derivatives are computed or which variables require them.

Using analytic derivatives is also superior to �nite di�erencing
schemes in that they produce accurate answers for discontinuous

1At the time of publication, there are active projects to extend OSL’s LLVM-based code
generation to PTX for execution on GPUs, and batch shading aimed at SIMD execution
using AVX-512 instruction set.
2Our full implementation of automatic di�erentiation may be found in the dual.h
header within the OSL open source project, is header-only with few dependencies to
other parts of the OSL code base, and can easily be extracted for use in other projects.

functions (like absolute value or modulo) and inside conditionals
(including loops). For texture lookups, analytic derivatives are partic-
ularly advantageous in that a single lookup is su�cient to perform
bump mapping. Likewise, expensive functions such as procedural
noises can compute their gradient with many fewer computations
than �nite di�erencing. For incoherent ray tracing (which does not
tend to shade entire tesselated grids at once), trying to compute
derivatives via �nite di�erences tends to require inventing and shad-
ing “auxiliary” points [Gritz and Hahn 1996] that serve no purpose
except for aiding the derivatives.

3.3 Material Closures
Traditional shading systems and languages tended to focus on com-
puting a color value that represented the exitant radiance from a
surface in a particular view direction. Computing this concrete value
necessitated gathering the incoming radiance from the scene (i.e.,
sampling, and recursively ray tracing) and integrating, including
evaluating the BSDFs. In addition to most of the shading systems
and languages typically having a less-than-solid grasp on the units
and dimensionality of the quantities involved, they tended to em-
bed the logic for sampling, integration, and ray tracing into the
shaders themselves, making it very hard to separate the description
of the materials from the implementation of the calculations for
light propagation. This made the task of shader authoring unneces-
sarily complicated, and made it very hard for the renderer authors
to alter its algorithms independently of the shader library.

The design of OSL sought to correct this by eschewing the calcu-
lation of view-dependent “�nal colors.” Instead, the main output of
shaders is a material closure. Borrowing the nomenclature from pro-
gramming language theory, a closure is a functional object, along
with any bound contextual state and concrete parameter values,
that may be later evaluated, sampled, or examined in other ways by
the renderer. A similar design was employed in PBRT [Pharr et al.
2016], where the material class returns instances of BSDF objects.
Our implementation of closures is a weighted linear combination
of BSDF lobes.3 The speci�c set of primitive BSDF lobes and their
implementations is supplied by the renderer.

The two primary things that a renderer may do with a returned
closure are:

• evaluate: supplying particular view and light vectors, re-
turn the result of the BSDF for those directions.

• sample: supplying just a single view vector, it can importance-
sample the BSDF to choose an appropriate outgoing direc-
tion to ray trace or sample a light source.

Because the shader is sending the renderer only the closure, with-
out evaluating it, the shader itself does not trace rays, determine
samples, integrate light, or need access to any renderer internals that
perform those tasks. With the renderer in control of the sampling,
choice of ray tracing strategy, and integration methods, shaders are
less cluttered and shader writers unburdened of undue complex-
ity, allowing them to concentrate on more interesting procedural
shading tasks. Shader library overhauls (or even recompiles) are not

3OSL’s closures are even more �exible than merely holding BSDF combinations, how-
ever, and renderers may allow primitive closures that set AOV values, designate the
surface as a holdout matte, or trigger other behaviors from the renderer.
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Fig. 4. Jungle scene from Kingsman: Golden Circle. © 2017, 20th Century Fox. All rights reserved.

necessary to accommodate innovations in sampling, integration, or
ray tracing.

3.4 Texturing: OpenImageIO
The amount of external texture required for production scenes can
be immense. Figure 4 required 324 billion texture queries, drawing
from a set of 8109 texture �les containing a total of 174 GB of texture
data. This is not considered a very texture-heavy scene; we have seen
many scenes that reference 1–2 TB of texture. In addition to handling
massive texture data sets with grace, we must ensure high quality
texture appearance to meet the needs of production. The texture
system implementation is part of the open source OpenImageIO
project [Gritz et al. 2008].

Our texture lookups use derivatives computed by the shader to de-
termine anisotropic �ltering which is accomplished via a weighted
set of individual samples along the major axis of the �lter ellipse.
Texture samples within each MIP level are usually bilinearly in-
terpolated, but any time a “magni�cation” is required (including
intentionally blurred texture lookups and any time we are sampling
from the highest-resolution level of the pyramid), we use bicubic
interpolation in order to avoid visible linear artifacts, which are
especially visible when using texture to determine displacement.
Texture �ltering is sped up by utilizing SIMD vector operations
using SSE intrinsics, primarily by doing the �lter math and sample
weighting on all color channels at once (most texture �les are 3 or 4
color channels).4

Texture Caching. We require textures to be stored in a tiled format,
typically divided into 64x64 texel regions that can be read from disk
individually, as well as to be MIP-mapped [Williams 1983]. A cache
of texture tiles is maintained in memory, with tiles read from disk
on demand. When the cache is full, unused tiles are evicted using a

4We are also exploring the use of wider SIMD, such as AVX and AVX-512, by texturing
batches of shade points simultaneously.

“clock” replacement policy. A second cache maintains the open �le
handles for textures, so that we do not exceed OS limits. In practice,
we tend to have an in-memory cache of 1-2 GB for texture tiles,
and 1000-10000 (depending on OS) open �le handles. With these
parameters, in practice we tend to only have around 10% redundant
tile reads, thus limiting in-RAM storage of texture to 1%–10% of the
full texture set with almost no discernible performance degradation.
Because multiple threads may be accessing the texture cache at
once, we ensure that the cache accesses are always thread-safe, and
the caches are implemented internally as multiple “shards,” or sub-
caches based on some of the hash bits. The shards lock individually
but do not block each other, so two threads accessing the top-level
cache simultaneously are highly likely to need di�erent shards and
this way neither will wait for the other’s lock.

Production and e�ciency considerations. The caching e�ciency
depends on maintaining a certain amount of coherence to the tex-
ture accesses, a di�culty given the notoriously incoherent access
pattens of ray traced global illumination. We address this problem
by tracking the accumulated roughness of rays, and automatically
blurring the texture lookups of di�use and rough rays generally
choosing a blur amount that ensures that the entire texture can
reside in just a single tile. This ensures that the most incoherent
rays tend to touch a minimal set of texture tiles and avoids thrashing
the texture cache. It also has the bene�t of reducing Monte Carlo
noise by heavily pre-�ltering the texture used for any shades of the
very sparsely sampled di�use rays.

The nature of production is that rushed artists often create scenes
with substantial ine�ciencies. Two situations we see frequently
are large textures (8192x8192 is standard for hero assets) that are
constant-colored, and multiple textures in the scene that are exact
pixel-for-pixel duplicates of each other, but nonetheless are separate
�les. Recall that because we require all renderer input textures to
be MIP-mapped and tiled, there is a separate o�ine step to convert
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ordinary images into this form. The tool that performs this task
(OpenImageIO’s maketx utility) checks for constant-valued input,
and in such cases outputs a greatly reduced resolution version as
well as an annotation in the texture �le’s metadata, and also for all
textures a computed hash of all the input pixel values is stored as
metadata. At render time, textures marked as constant can avoid
expensive �ltering (and taking up space in the cache). Also, when a
texture is �rst opened, its pixel value hash is compared to that of
all other textures, and if a duplicate is found, further queries to that
texture will be redirected to the �rst of its identical siblings. It is not
unusual for complex scenes to have hundreds, or even thousands,
of exact duplicate textures, so this strategy can eliminate a lot of
redundant disk I/O.

3.5 BSDF Models
We have historically valued a rather free-form assembly of basic
BSDFs by weighted summation. This approached was e�ective for
a long time, but was unable to express structural layering (such as
varnishes or clearcoats) where one BSDF a�ects the others in a view
dependent manner. Moreover, it complicated energy conservation
as many BSDF models re�ect all energy at grazing angles due to
Fresnel e�ects.

We have since transitioned to a more holistic description of sur-
face shading that encapsulated the behavior of the three canonical
surface types: conductors, opaque dielectrics (plastic) and transpar-
ent dielectrics (glass). This uber shader approach has allowed us
to more carefully account for energy conservation (never creating
energy from any angle) but also energy preservation (not losing en-
ergy unnecessarily). We refer the reader to our recent presentation
of these ideas for more details [Hill et al. 2017].

3.6 Medium Tracking
Solid objects with non-opaque interfaces let light travel through
their interior medium. This is the case for glass, liquids or shapes
with subsurface scattering. A ray tracer needs to be aware of the
medium a ray is traveling inside at all times if we want to be physi-
cally accurate. We have adopted ideas from nested dielectrics [Schmidt
and Budge 2002] to keep track of which medium any given ray is
inside of.

Artists assign medium priorities to resolve the con�ict between
overlapping objects. An ice cube �oating on water would have high
priority to exclude the water medium from it, for example.

Stacks are light-weight and the dynamic memory management
can rely on per-thread memory pools. They are non-mutable small
objects shared where needed and they all get released at the end
of the random walk, so there is little overhead involved. From this
tracking we also get the bene�t of computing the right IOR between
mediums, which is key for realistic looking underwater objects or
liquids inside glass (see Figure 5).

Any con�icts in the medium stack update arising from improper
modeling or numerical issues causing missing hits are simply ig-
nored. We have done our best to craft the stack update rules to be as
robust to all cases as possible. We refer to our recent presentation on
this topic for more details, including how medium tracking interacts
with volume primitives [Fong et al. 2017].

Fig. 5. Rendering of liquids in glass requires medium tracking to obtain
a proper refraction event. On the le�, the liquid is modeled slightly over-
lapping the glass, with extra intersection events filtered by our medium
tracking system. On the right, the liquid is modeled slightly smaller than
the glass and the resulting air gap produces an undesirable refraction.

4 INTEGRATION

4.1 Path Tracing
Arnold mainly uses unidirectional path tracing with next event esti-
mation. This is a Monte Carlo integration technique that randomly
traces paths from the camera to the scene, computing connections
to the light sources at every intersection.

The simplicity of unidirectional path tracing is of important value
from a software engineering point of view, but also because it is
easy to explain to end users. It also happens to be the ideal sampling
technique for the vast majority of production shots because lights
are frequently placed to maximize their direct impact. Strongly
indirect scenarios are usually avoided for the same reason they are
avoided in real �lm production: the �rst bounce of light is simply
easier to control. Path tracing does have its weaknesses however,
mainly high variance when strong and localized indirect lighting
appears (caustics or indoor lighting scenarios).

In practice there are a number of techniques to work around
these issues, so these drawbacks are avoided. Filtering and softening
caustics, together with intelligent transparent shadows help get
the desired look in most cases. So far we have only had to resort
to more advanced integration techniques like bidirectional path
tracing (BDPT) in very speci�c scenarios.

The use of OSL shaders allows us to switch from one integrator to
another with no asset modi�cation. Unfortunately, the BDPT family
of integrators (see Section 4.8) have too much overhead and often
shoot too many unnecessary rays. This weakness is common to all
applications of multiple importance sampling because they only
weight multiple estimators after the fact instead of choosing the
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right one a priori. As the number of techniques grows, the overall
e�ciency becomes lower, particularly if some sampling techniques
have negligible contribution. For these reasons, simple path tracing
continues to be the technique of choice for our production and
research e�orts.

4.2 Filter Importance Sampling
There are two popular methods to perform image �ltering in a
ray tracer. Samples may either be drawn uniformly and splatted to
multiple pixels, weighted by the �lter kernel, or the �lter kernel can
be importance sampled directly, warping the distribution of rays
within each pixel to �t its pro�le [Ernst et al. 2006]. The former
method has the advantage of reusing rays and therefore reduces
variance with fewer samples, but it has a number of disadvantages:

• Pixel values and the integral they come from are not in-
dependent. This a�ects the nature of the noise, lowers the
frequency and can confuse a denoising process later on.

• Sampling patterns need to be carefully crafted between
pixels to avoid artifacts because samples are shared with
neighboring pixels.5

• It increases code complexity because splatting across pixels
introduces additional data-dependencies that complicate
multi-threading.

These reasons motivated us to switch to Filter Importance Sampling
(FIS) instead. This turns all image �ltering into a simple average and
simpli�es the parallel implementation by making each pixel fully
independent. This choice also makes adaptive sampling much easier
to implement (see Section 4.7.5).

While numerical experiments suggested the convergence was
worse than splatting, the perceptual nature of the noise was deemed
much more pleasant by artists who appreciated the pixel-sized grain
much more than the “blurry” noise that splatting can produce. More-
over, the pixel-to-pixel independence greatly improves the e�ective-
ness of denoising algorithms [Sen et al. 2015] making the move to
FIS a win overall.

4.3 MIS
While importance sampling of lights and BRDFs is well understood
in isolation, sampling their product is much more di�cult. We em-
ploy multiple importance sampling [Veach 1998] to improve the
weighting between multiple estimators. We also apply this technique
when sampling complex BSDFs made up of multiple lobes [Szécsi
et al. 2003]. Each direction on the hemisphere can usually be gener-
ated by several BRDFs, but by weighting the samples according to
all BSDF sampling probabilities, we can obtain much more robust
estimators.

The math for this combination is very simple, although in prac-
tice, special care needs to be taken for singularities. This means
perfectly smooth mirrors or point lights where the PDF reaches
in�nity. Arnold exercises the IEEE �oat algebra for these values

5Ernst et al. [2006] claim that FIS produces less noise for a given sample budget than
splatting samples, but this e�ect is actually due to the poor pixel-to-pixel correlations
of the particular sampling pattern they chose. In our experiments, the convergence of
splatting was always numerically superior due to the fact that splatting samples raises
the overall sample count per pixel.

to achieve an e�cient implementation with minimal code branch-
ing and no special cases for singular BSDFs represented by delta
distributions 6.

Beyond these cases, we also apply MIS to related problems of
combining estimators for volume sampling [Kulla and Fajardo 2012]
and BSSRDF [King et al. 2013] importance sampling.

4.4 Many Lights
Next event estimation in path tracing is a powerful variance re-
duction technique, but it does introduce the problem of e�ciently
deciding which lights are most important to perform the next event
estimation on. When dealing with scenes with millions of light
sources, the mere act of looping over them can be a severe perfor-
mance overhead.

We extend the concept of acceleration structures for ray tracing
to also improve the light selection process [Conty and Kulla 2017].
Starting from the assumption that we would need a BVH for e�-
ciently tracing shadow rays towards scene lights for BSDF samples,
we sought to make use of the same structure to also guide light
importance sampling. The BVH can be viewed as a light clustering
hierarchy where we de�ne an importance measure at each node to
decide how to traverse and sample the tree. However, for very big
clusters (the upper levels of the tree), a meaningful importance is
hard to de�ne. We use a variance based heuristic to decide for each
cluster if we should continue traversal into both children (thereby
increasing the number of lights selected) or select a child stochasti-
cally for the remainder of the tree traversal (guaranteeing a single
light will be chosen).

Although our technique cannot bound the number of chosen
lights a priori, experience has shown that this greatly accelerates
convergence. The subtree selection resembles the Lightcuts tech-
nique [Walter et al. 2005], but we make much smaller cuts (typically
1 to 20 lights) and perform unbiased importance sampling on the
remainder of the tree instead of discretizing the light sources into
points upfront and using cluster representatives.

We also use this technique to deal with mesh-lights which we
view as collections of triangular sources. In this case, we disable the
splitting heuristic so we never choose more than one triangle per
sample. Because our scheme takes into account power, distance and
orientation, it does not waste any samples on portions of the mesh
that are facing away from the point to be shaded.

Introducing this acceleration structure has freed artists to more
liberally place lights across environments without worrying about
managing shadow ray budgets or having to use tricks such as ar-
ti�cially limiting decay regions. Our technique has the advantage
of being relatively memory e�cient in that it re-uses a BVH that
would likely be needed for ray tracing anyway. On the other hand,
it is unable to take into account any information not included in the
tree such as occlusion or light blockers leading us to occasionally
waste samples on lights that make no contribution. This remains an
interesting avenue for future work.

6The testrender program in the OSL codebase contains an example implementation
of this approach.
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4.5 Volume Importance Sampling
The scattering of light from volumes behaves very similarly to scat-
tering from surfaces with the added problem dimension of choosing
the scattering point along the ray before choosing the scattering
direction.

We have particularly focused on e�cient sampling of direct light-
ing in volumes for which we have developed two novel techniques [Kulla
and Fajardo 2012].

To reduce variance from light sources inside participating media,
we direct more samples closer to the light via equiangular sampling.
This has the e�ect of canceling the 1/r2 weak singularity from the
lighting integral and substantially reduces noise.

To improve the performance of heterogeneous media, we maintain
a description of the volumetric properties along the ray in order to
be able to quickly evaluate the transmittance to any point and place
samples appropriately along it as well. This caching step means
we can evaluate volume shaders at a di�erent rate from lighting
calculations which we refer to as decoupled ray-marching to con-
trast it with classical ray-marching which evaluated both volume
properties and lighting at the same rate [Perlin and Ho�ert 1989].

4.6 Subsurface Sca�ering
We provide two di�erent approaches to render subsurface scattering.
The �rst is a BSSRDF model [King et al. 2013] which simply blurs
illumination across the surface and thus ignores the actual paths
that light could have taken below the surface. The other is a brute-
force Monte Carlo method which leverages our volume sampling
infrastructure.

The BSSRDF approach is faster as it only requires a few probe
rays to approximate the e�ect of long scattering paths below the
surface. This works well if the mean free path is quite short, but fails
at capturing the proper appearance over longer scatter distances
as the model makes the assumption the surface is locally �at. As
the surface under the scattering radius starts to deviate from this
assumption, this model can start gaining energy due to improper
normalization.

On the other hand, the volumetric approach computes a much
more realistic response, regardless of volume parameters, but has
greater cost because it is evaluated as a volumetric e�ect. To keep
the results predictable for users (and reduce the number of special
cases in our code) we have fully uni�ed volume rendering and brute
force subsurface scattering. This means that placing light sources
inside an object will produce the expected result and that subsurface
objects can be nested within one another freely. Medium-tracking
(see Section 3.6) is essential here to help de�ne volumetric regions
from potentially overlapping geometry. Even though this method
is volumetric, we still rely on the surface shader run at the entry
point to de�ne the volumetric parameters.

4.7 Variance reduction
4.7.1 Path Intensity Clamping. Our �rst line of defense against

unwanted noise is to clamp any contribution above a certain thresh-
old. We apply this to any path that has bounced at least once, and
clamp with a lower threshold for high roughness paths (that have

a large angular spread) versus low roughness paths (that mostly
follow deterministic paths).

Despite its simplicity, this technique can easily reduce the amount
of noise in many common scenarios such as light sources against a
wall where the hot spot on the wall itself would normally manifest
itself as strong indirect noise. Naturally, the overall energy can be
much lower if compared to a ground truth solution, but because
this optimization is enabled by default, most artists never compare
to the true solution. Early work by Rushmeier and Ward [1994]
attempted to spread the clamped energy to nearby pixels, but this
can lead to low frequency temporal artifacts as small �re�ies tend
to move around between frames. Recovering this missing energy in
a meaningful and temporally stable way is de�nitely an important
avenue for future work.

4.7.2 Roughness Clamping. Kaplanyan et al. [2013] present a
modi�cation of the light transport measure to remove singularities
that cause certain light transport paths to be impossible to sam-
ple in some algorithms. The main observation was that blurring
the singularities in the integration domain makes them easier to
integrate.

We use a similar technique to smooth out strong caustic contri-
butions, by clamping the roughness at any path vertex to be at least
equal to the largest roughness seen along the path so far. This avoids
di�use-glossy or glossy-glossy noise at the expense of smoothing
out caustic e�ects.

4.7.3 Caustic Avoidance. Together with the softened caustics,
we use an additional shortcut to let light reach the interior of glass
objects. We approximate this e�ect by ignoring the refraction at the
glass boundary for shadow rays, allowing direct lighting to pass
through the boundary. For many scenarios such as car windows,
bottles or glasses, the thickness of the glass volume is such that the
double refraction is well approximated by this simple approximation.

We avoid double counting the contribution by an MIS inspired
weighting [Hill et al. 2017] between the two possible paths: the
correct one that reaches the light source by indirect sampling, and
the approximate one that reaches the light by ignoring refraction.

We rely on this scheme for all cases involving glass such as car
interiors, glass bottles but also brute-force subsurface scattering,
where getting light to a�ect the medium through the interface is
important to a correct appearance.

4.7.4 Stochastic Path Rendering. There is a special case of mul-
tiple hits that happen on a straight line. A ray can cross multiple
transparent surfaces and volume segments. Computing light con-
tribution at all these intersections introduces wide splits in the ray
tree resulting in an exponential increase in the amount of lighting
calculations to be performed. This is in fact the same issue that
makes brute force classical ray marching impractical for recursive
ray tracing (see Section 4.5).

We found that we can track the contribution decay along the ray
and the albedo of all intersected elements to build a CDF for their
importance. Random candidates for lighting get chosen from this
distribution, allowing us to follow a single path from a ray instead
of many, preventing the ray tree from growing exponentially.
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In fact, this step can be extended across bounces and we can sam-
ple lighting over very long paths sparsely to improve e�ciency. We
have found that it is worth always sampling lighting on the camera
ray (once across multiple transparent hits) while the higher-order
bounces can be merged if the total path length becomes large (more
than 16 bounces in our current implementation). This is particularly
helpful for subsurface scattering which may require many internal
bounces that all make similar contributions to the �nal pixel.

4.7.5 Adaptive Sampling. The noise distribution within the frame
is rarely uniform; there are always areas of the image that require
more samples than others. To this end, we allow the pixel variance
to drive additional sampling to noisier pixels. In this context we use
the variance of the mean (the pixel color) which is a value that de-
creases as the number of samples grows, as opposed to the variance
of the samples. The central limit theorem ensures that in the limit,
the distribution of values the mean takes on approaches a normal
distribution, making the variance a quantity we can meaningfully
reason about.

The render operates in multiple passes over the image. The initial
passes serve to establish a baseline for the variance and ensure
very small features are not missed. Beyond this point, only pixels
exceeding an error threshold receive more samples. The render
stops whenever all pixels pass the error threshold or a maximum
sampling rate is reached.

Because the variance itself is a random variable, looking at a
single pixel in isolation introduces bias. Our solution is to use the
maximum error over a small window of pixels to make our decision.
While this is still theoretically biased, we have not observed any
issues from this in practice.

The error estimate is based on the standard deviation σ and the
mean µ. We apply a perceptual tone mapping curve to the values
µ + σ and µ − σ . This lets us estimate the perceptual rather than
absolute error which avoids over-sampling highlights or under-
sampling darker regions.

Introducing adaptive sampling to the renderer has generally al-
lowed artists to worry much less about �ne-tuning individual sam-
pling controls, however it has had some perhaps surprising work�ow
implications. For example a user error like a light partially intersect-
ing a wall will introduce high variance that the adaptive sampler
will try to compensate for. With a �xed number of samples per pixel
these errors appeared as extra variance in the �nal image which
could be diagnosed, while with adaptive sampling the error might
only manifest as extra long render times which may be harder to
trace back to the source. Another perhaps surprising consequence
of the image-level adaptive sampling has been that raising sample
counts can sometimes speed up a render, by reducing the amount
of variance between primary rays and therefore requiring fewer
passes overall.

4.8 Advanced Integrators
Since we use view-independent OSL shaders, we have freedom
to change the integration algorithm easily. We have implemented
basic BDPT [Veach 1998] with recursive MIS weighting [Antwerpen
2011]. But we also have variants using primary space Metropolis
light transport [Kelemen et al. 2002], multiplexed MLT [Hachisuka

et al. 2014], and Vertex Connection and Merging (VCM) [Georgiev
et al. 2012].

These methods allow us to produce complex e�ects in some very
particular shots where they are really required, but also give us
the ability to compare our unidirectional path tracing shortcuts
discussed in Section 4.7 to the ground truth.

4.8.1 MCM. One of the most di�cult type of paths to sample
are specular-di�use-specular paths like in underwater caustics. The
VCM algorithm was designed to handle these cases, but it can be
further improved by using Metropolis methods to guide the paths.
A basic implementation of Metropolis techniques often leads to
unstable results in animation due to correlation between paths and
the sudden discovery of new features. To mitigate this problem, we
combine a number of techniques, including Multi-Stage Metropo-
lis light transport [Hoberock and Hart 2010]. This helps equalize
the contributions over the image plane, while still improving the
convergence of the underlying light transport method (BDPT or
VCM).

We call our hybrid approach Metropolis Connecting and Merging
(MCM). In this integrator we store photons in a pass-based fashion
like the VCM algorithm, except the photons come from the camera
paths instead of light paths (we call them sensor photons).

The advantage is that we can apply Metropolis sampling to the
light paths, which accumulate not only by connections but also
by merges with the sensor photons. This helps greatly focus light
particles in the interesting areas, reducing variance from the original
VCM algorithm. This is our most robust integrator to date. We brie�y
note that many other researchers have independently explored the
combination of these ideas. The work of Šik et al. [2016] is most
conceptually similar to ours, though we have not attempted a direct
comparison to their implementation details.

4.8.2 Production usage. MCM (and sometimes our simpler MLT
if photon merges are not required) is our alternative integrator of
choice for complex lighting situations. But rendering with a separate
integrator is far from ideal for the artists. The preference so far has
been to generate additional passes isolating a particular e�ect like
caustics to be combined later on in compositing rather than trying
to render all passes with the alternative integrator.

Bidirectional integrators are robust but have the disadvantage of
considering many techniques that end up being weighted away by
MIS. Also, the texture access pattern is much less coherent which can
lead to cache thrashing. Unlike with path tracing, where successive
bounces can reduce texture �ltering �delity, light paths can connect
to the camera at any point and must retain roughly pixel sized ray
di�erentials. Finally, some simple artistic controls such as tagging
objects not to cast shadows while still being illuminated by a light
are di�cult to support in a bidirectional context.

5 SAMPLING PATTERNS
The performance of Monte Carlo sampling depends critically on the
spatial properties of the input random numbers. It can be shown,
for instance, that strati�ed sampling is always superior to purely
random numbers. Recent research [Subr et al. 2016] has tried to
further explore the link between variance and the power spectrum
of the input point set. The most directly applicable consequence
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of this research is the observation that variance is proportional to
the product of the power spectrum of the integrand and sampling
pattern. Sampling patterns whose radially averaged power spectrum
falls to 0 at low frequencies are much more e�ective at lowering
variance than those that do not, regardless of the actual shape of
the integrand’s power spectrum (which is unknown but usually
contains some low frequency component).

Arnold has historically expressed all sampling controls as perfect
squares. When a user requests sampling level n, we use n2 samples.
This facilitates the generation of sample sets that are well strati�ed,
particularly when implementing path splitting where an initial set
of n2 camera rays is further re�ned into m2 rays each, producing
a total of (nm)2 rays for the pixel. By generating a larger pattern
for those secondary rays (for instance by multi-jittering [Shirley
and Wang 1994]) it is possible to guarantee a good distribution both
within the pixel, and within each subset of sizem2.

5.1 Magic Shu�ling
While the fast generation of high quality sampling patterns in 2D is
well studied, the extension to multi-dimensional settings is harder
and must contend with the curse of dimensionality. An alternative
approach to using high dimensional points is to re-use shu�ed inde-
pendent realizations of low dimensional patterns. In doing so, one
must pay special attention not to introduce unwanted correlation
between the dimension pairs that are not directly constructed.

(x,y)

(x,z)

(x,w)

(y,z)

(y,w) (z,w)

Fig. 6. We visualize two instances of blue noise points (x, y) and (z, w ) as
might be used for pixel sampling and BSDF sampling for example. We also
visualize the resulting cross-dimension sampling pa�erns, for instance the
x coordinate of the subpixel against the z random component for BSDF
sampling. Here we randomly shu�le the order of the second set of points,
which means the cross dimensions look like completely random point sets.

The simplest way to decorrelate pairs of dimensions is to ran-
domly shu�e the points between them. This has the e�ect of ran-
domizing the non-primary pairs of dimensions, letting them revert
to plain random sampling (see Figure 6).

We have discovered that a small modi�cation to this shu�ing
step can produce much better results, assuming that the input points
were generated on a grid. With this method, the non-primary pairs
now revert to strati�ed sampling, without breaking the properties
of the original points (as they are merely enumerated in a di�erent
order). We outline the pseudocode of this approach in Figure 7. We
have dubbed this technique the “magic” shu�e as we do not have
any formal proof of the reason for its success. The basic intuition

int magic_shuffle(int i, int n, int seed) {

// shuffle rows and columns

int rx = rand_permute(i % n, n, hash(seed , 1));

int ry = rand_permute(i / n, n, hash(seed , 2));

// shuffle diagonals to stratify

int sx = rand_permute ((rx + ry) % n, n, hash(seed , 3));

int sy = rand_permute ((ry + sx) % n, n, hash(seed , 4));

return sy * n + sx;

}

Fig. 7. Magic shu�ling creates a permutation of a sample index i ∈
[
0, n2) .

The seed parameter should change per pixel and with each depth. The
rand_permute function procedurally indexes a random permutation of
length n from a given seed.

that guided us was that we wanted to exchange rows and columns
of the input pattern, followed by diagonals of the pattern. To our
surprise, the spectral properties of the resulting shu�ed points look
very much like that of strati�ed point set, despite the fact that we
have not changed the coordinates, only the relative enumeration
from one pattern to the other. That being said, only 3 of the 4 possible
cross-pattern dimensions become strati�ed, which is explained by
the slight asymmetry in the last step of the shu�ing. To date, we
have not been able to “�x” this issue, and therefore we need to pay
special attention to which pair of dimensions receives the less well
shu�ed set.

The pseudo-code in Figure 7 can be further generalized to opti-
mize the path splitting case where an input point set of size (nm)2
is partitioned into n2 well distributed subsets of size m2 each. It
can also be generalized to shu�e more than 2 pairs of 2D samples,
resulting in good distributions across more dimensions. Naturally,
each time a shu�e is performed, the optimal properties only appear
relative to the input index. Therefore we had to pay special attention
to which pairs of samples received the more optimal points. Finally,
it is worth noting that the shu�ing is not necessarily restricted to
2D input points. It can work for specially crafted 3D or higher-order
base points that need to be decorrelated from each other, as long as
the �rst two dimensions can be enumerated on a grid.

(x,y)

(x,z)

(x,w)

(y,z)

(y,w) (z,w)

Fig. 8. Our magic shu�ling improves the distribution of the other pairs
of points by giving them similar properties to stratified points, without
changing the two input point sets at all. Only the (x, w ) pair remains
randomly shu�led.
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5.2 Progressive Shu�ling
As discussed in Section 4.7.5, we have recently transitioned to ren-
dering in a more continuous way which precludes the upfront opti-
mization of sampling patterns for particular rates.

As such, we have had to abandon the techniques outlined above in
favor of progressively enumerable patterns (recent work by Ahmed
et al. [2017] presents a particularly elegant construction). We have
faced the same challenge as with �xed-rate samplers though, and
have found that replicating high quality low-dimensional patterns
in higher dimensions is more successful than trying to generate
very high dimensional patterns directly.

To ensure there is no correlation between pairs of dimensions,
we can no longer rely on a straightforward random shu�e as the
number of points is not known. Instead we perform the shu�ing
progressively. We observe that since our sampling controls are still
perfect squares, each increment in the global number of samples
per pixel provides a larger and larger budget of samples. Therefore
we simply shu�e our patterns as follows: when moving from n2

points to (n + 1)2 points, we shu�e the 2n+1 new samples amongst
themselves. Using a di�erent permutation for each depth ensures a
good quality scrambling while minimizing the deviation from the
overall sequence. As we reach each perfect square marker, we have
exhaustively taken all samples from each stream, simply in di�erent
orders. We consider each such marker of n2 samples a pass and only
present the image to the user on such boundaries.

The combination of FIS and progressive sampling has enabled
us to implement adaptive sampling in a very straightforward way.
While both changes were slight regressions on their own, the ability
to “keep going” on any pixel has been worth it overall.

6 PIPELINE AND TOOLING
Production renderers do not exist in a vacuum. One of the particular
advantages of writing an in-house renderer is the ability to tailor
its interfaces to match that of the rest of the production pipeline.

6.1 kick
Arnold has a simple command-line frontend tool called kick which
is used to read in .ass7 scene �les and to display the render in a
simple X11 window. Over the years, we added numerous debugging
features such as the interactive selection of shading modes, con-
trols for interactively moving the camera or lights, overriding of
parameters, simple turntable controls, etc. It is also very common
for developers to write .ass �les for fast edit-build-render iterations
when debugging. Arnold’s regression test suite consists of .ass �les
rendered by kick.

The .ass �le format is intentionally very simple. It consists of a
straightforward serialization of the nodes that comprise the scene.
We provide an example in Figure 9. To support debugging of very
large scenes, we also support a binary version of this �le format
(.abs �les8) which is even more optimized. We continue to use the
plain ASCII �avor for longer term archival of scenes however, as it
is more convenient to edit.

7A “backronym” standing for Arnold Scene Source.
8A “backronym” standing for Arnold Binary Scene

persp_camera {

position 0 0 20

look_at 0 0 0

up 0 1 0

fov 13

}

sphere {

center -1 0 0

radius 1.0

shader red

}

sphere {

center 1 -0.2 2

radius 0.8

shader basic

}

plane {

point 0 -1 0

normal 0 1 0

shader basic

}

standard { name basic }

standard { name red color 0.5 0.1 0.1 roughness 0.4 }

skydome_light {

color 0.7 0.8 0.9 affect_camera on

}

physical_distant_light {

color 0.9 0.7 0.5 direction -1 -2 -1 angle 2 exposure 3

}

Fig. 9. A sample .ass scene description, and the resulting image. The file
format directly mimics how the renderer represents objects in memory.

6.2 Katana
Katana is a lighting tool built around a very �exible scenegraph
processing architecture which allows lazy processing of very large
scenes. Our look development and lighting artists primarily interact
with the renderer through this tool.

We take advantage of Katana’s �exibility to replace some fea-
tures that would otherwise belong in the rendering interface. For
instance, because Katana natively represents a scenegraph with
powerful inheritance mechanisms, the renderer only needs to have
a much simpler node-based architecture without any form of inher-
itance. Also, because Katana can lazily load and procedurally de�ne
geometry, we do not need to have procedural geometry creation
tools in the renderer itself. This means render time generated ge-
ometry like fur, grass or even crowds can be processed on the �y as
Katana translates the scene to the renderer. Unlike systems which
have opaque render time generation procedurals, the fact that ours
are described through the lighting tool itself greatly simpli�es the
manipulation of said geometry for artists who are able to inspect it
directly.

6.3 Live Rendering
Artist productivity is greatly enhanced when working in a “live
rendering” environment where attributes such as position and ori-
entation of objects and lights can be freely manipulated without
having to restart the render. To facilitate this work�ow, we have
made a few changes to simplify this interaction paradigm from the
API level. The renderer can be launched in a special “server” mode
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which accepts all attribute changes from the host application, and
schedules their application inside the renderer.

To avoid race conditions such as tracing against partially built
acceleration structures, attribute changes submitted to the renderer
while a render is in progress are stored in a change queue. This
act of writing an attribute into the change queue will trigger a
signal to the renderer to abort any in-progress render. Once the
render has stopped, all outstanding changes are applied, any a�ected
spatial hierarchies are rebuilt, and the render is restarted. No other
special considerations have been made, and the “live” renderer is
no di�erent from the �nal frame renderer. This has allowed artists
to heavily rely on this functionality and we make every e�ort to
support a maximum number of scene edits in this mode.

Arnold is robust to nearly all feature changes such as the addition
or modi�cation of geometry, lights, and shading networks.

6.4 Checkpointing
There are several scenarios that require the ability to abort renders
in progress without losing the progress made so far. For example,
migrating jobs from slower to faster cores as dictated by production
driven priority changes, or quickly taking machines o�ine for main-
tenance or upgrades, even if they are in the middle of rendering
frames.

The required data �les are simply the full �oat EXR image �les,
which can be loaded back in memory without data loss. Some special
�lters may need some auxiliary data: for example a closest hit �lter
may need to record the Z value of the current pixel for comparison
against future samples. We also keep an image with sample count
and variance information for the adaptive sampling convergence
measure. Even with dozens of simultaneous image outputs (for
example isolating per-light contributions, or geometric data like
normals and Z ), we can �ush all needed data to disk in a couple of
seconds. This data is saved between passes of the adaptive sampling
code (see Section 4.7.5) which ensures that less than a pass worth of
data can be lost. We throttle this rate if the render is going quickly
to avoid doing too much I/O as well.

Because our sampling patterns are progressive, we can keep pro-
viding new samples from any stopping condition. The same check-
pointing feature therefore also allows resuming renders with higher
�delity.

6.5 Threading
While it is generally easy to assign large independent tasks, such
as building a BVH or subdividing a mesh, to di�erent threads for
coarse-grained parallelism, there is often at least one outlying task
that takes signi�cantly longer than any others which causes the
remaining threads to idle and until it is complete. To ameliorate
this waste, all parallel algorithms in Arnold support cooperative
multi-threading, where any thread can assist any other thread with
its current task. These concepts are illustrated in Figure 10.

Scene preparation is divided into several di�erent stages, such
as processing geometry or lights. Associated with each stage is a
large queue of tasks requiring attention, such as subdividing objects,
building their BVHs, or creating light importance tables. Each thread
will take the next available task in the queue and work on it to
completion. When there are no more tasks available, threads will

thread 1
thread 2
thread 3

. . .

thread n

time

thread 1
thread 2
thread 3

. . .

thread n

time

Fig. 10. On the le�, we show how parallelism only across high level tasks
illustrates how very long tasks can ruin the e�iciency of the system. On the
right, the outlying task is further worked on cooperatively by all threads
which improves e�iciency.

make a second pass through the queue and work collaboratively on
any remaining “in-�ight” tasks.

7 DISCARDED IDEAS
To retain code simplicity, we do our best to remove experiments that
have failed or features that have been supplanted by others.

7.1 Hair and SSS Illumination Caching
For many years, we relied on caching techniques to speed up the
calculation of subsurface scattering or hair multiple scattering. How-
ever, as we discovered improved importance sampling techniques
for these cases, the need for such caches was removed.

Our implementation of these types of caches were transparent to
the artist. They never required manually setting up passes between
jobs and instead were populated on-the-�y during rendering. But
they still had a number of drawbacks: they could grow quite large
in memory, had subtle artifacts and tuning parameters the artists
had to be conscious of. Moreover, compared to proper importance
sampling, caching was simply not competitive in speed due to more
complicated inter-thread synchronization.

7.2 Batch shading interpreter
In our �rst working implementation of OSL, the shaders were evalu-
ated in the renderer in classic Reyes style: shading batches of points,
interpreting one shader instruction at a time in lock-step, with each
instruction executing on all batch points. We even made several
improvements over earlier systems, such as dynamically allowing
variables to change from “uniform” to “varying” and back, depend-
ing on what was assigned to them (uniform calculations are done
once per batches, versus varying calculations being performed for
every point).

But we found that while this batched interpreted approach had
worked well for Reyes-style renderers that naturally generated large
coherent grids of points to shade with the same material, the perfor-
mance was inadequate for production rendering in the context of
a path tracer that struggled to �nd enough shading coherence for
secondary rays, limiting how much we could amortize interpreter
overhead over large batches. The necessity of batches also greatly
complicated the ray tracing architecture.

We switched to the simpler single-point-at-a-time shading, and
changed from an interpreter to LLVM-based JIT to machine code
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(thus, no interpreter overhead), which not only resulted in much
faster shader evaluation, but also allowed us to greatly simplify the
ray tracing code base by removing the need to trace batches of rays.
(Though some of these ideas may yet return, as we continue to
explore streaming of rays and batched shading – though this time,
utilizing hardware SIMD rather than an interpreter.)

7.3 Light Path Expressions
An interesting fallout of our push to OSL was a rethinking of how
shading AOVs9 should be handled by a modern path tracer. Our
facility relies on AOVs for a number of things: decomposing the
image into individual components (such as direct and indirect dif-
fuse, specular, sss and volume scattering), breaking up the image by
(groups of) light sources, and also computing masks of individual
features (individual characters in crowds or shading regions like
skin, eyes, etc.). These allow more �exibility in how the image can
be manipulated after the render is done in compositing.

Previous shading languages (and our own C API) burdened shader
writers with maintaining a coherent array of output colors that split
the image into these meaningful components. As the importance
of indirect lighting grew, tracking this e�ciently throughout all
shaders became a major source of complexity. We did not wish to
burden the OSL language with said complexity. Instead, drawing
inspiration from Paul Heckbert’s early work on classifying light
paths ([Heckbert 1990]) we designed a regular expression engine
that could compactly encode the desired set of AOVs. This Light
Path Expression (LPE) engine was initially outside of the OSL project
and part of the renderer, but we published a description of its capa-
bilities alongside the OSL documentation to suggest a possible way
that AOVs could be supported orthogonally to the language. Be-
cause the engine constructs a state machine from the user supplied
expressions, only 32 bits of state per ray is required, making the
runtime cost relatively low. However there were some unexpected
consequences that made us ultimately reconsider the use of light
path expressions.

The biggest downside was that LPEs constrained some sampling
decisions like the ability to merge di�use and specular lobes at
deeper bounces. We also discovered that very few artists (and in
some cases, even ourselves) could assemble a coherent set of LPEs
that would be guaranteed to add back up to the main output without
double counting any contributions. For this reason, we reverted back
to a hand-written set of rules, maintained by the renderer. At the
moment, all AOV splitting logic resides in a single function, where a
chain of if/else conditions ensures that no contribution can ever
be double-counted.

The core idea of LPEs, on the other hand, proved to be popular,
and by community request we ended up including the matching
engine as part of the OSL project around the same time we removed
support for it from our renderer. To our knowledge, several of the
implementations of LPEs in commercial products have directly made
use of this code.

9“Arbitrary Output Variables” is jargon inherited from the implementation in Render-
Man, where extra shading components were simply additional variables output by a
shader. Our renderer does not represent these this way, but the acronym has stuck
nonetheless.

In retrospect, this small feature ends up being a great case study
in the di�erence between in-house vs. commercial renderers. A com-
mercial renderer cannot envision all possible use cases a customer
might face, and must provide very powerful mechanisms to override
built-in behavior. On the other hand, in-house renderers cater to a
much narrower set of users facing known problems. When looking
at the problems that LPEs solve, it turns out that very few really
required the full generality they o�er, and we therefore bene�ted
from keeping our code simpler.

7.4 Deferred Tessellation
Lazy evaluation of subdivision and tessellation in hopes that we
might save time and memory by only subdividing those objects that
are hit by rays is a false promise. Our experience has been that when
global illumination is being computed, nearly every object in the
scene will be seen by at least one ray.

While we did support deferred subdivision and displacement for
a long time, we removed this ability for several reasons. During the
�rst few passes, many rays were waiting on the same objects. This
meant the slightly less e�cient inter-object cooperative parallelism
was used when in fact working on multiple objects independently
could be more bene�cial (see Section 6.5). Also, displaced geometry
required some padding to account for the eventual movement of the
not-yet displaced vertices. This last point was a particular problem
because this padding is very hard to specify optimally: if the bounds
were too tight, geometry could appear clipped in the render; and
if the padding was too loose, then we would su�er performance
degradation. With up-front subdivision and tessellation, we can
compute exact bounds for subdivided and displaced geometry prior
to building the acceleration structures. Moreover, the resulting code
is simpler and more orthogonal.

7.5 Geometric Procedurals
As discussed in Section 6.2, geometric procedurals which were once
described by a custom plugin type to the renderer itself are now
handled by our lighting tool where they are much easier to inspect
for artists.

Interestingly, the Katana lighting tool itself was heavily based
around the idea of lazy expansion through procedurals. Because
Katana’s architecture is lazy (nothing is computed until requested)
it is possible to traverse the scenegraph only a few levels at a time,
waiting for rays to intersect the bounds of that region before ex-
panding the scene further.

This work�ow turned out to be detrimental to a ray tracer for
similar reasons to lazy tessellation. Additionally, artists typically or-
ganize the scene for ease of logical navigation, not spatial e�ciency.
For instance a city scene may group all trees, all stop signs and all
benches together. Naively walking the hierarchy would produce
pathologically overlapping bounding boxes that would be very in-
e�cient to traverse. By walking the entire scene upfront, we have
greatly simpli�ed the renderer implementation as well as the Katana
renderer plugin, which no longer needs to retain state about the
scene traversal during rendering. Katana’s ability to evaluate the
scenegraph is still critical however as it ensures we can stream
through the scene representation and pass it along to the renderer
without having duplicated storage.
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8 CONCLUSION
Arnold has been in use at Imageworks for over 13 years. During
this time, it has undergone many dramatic changes. This document
represents a snapshot of our thinking on a variety of topics, but we
do not believe we are “done” with any aspect of the renderer.

As exempli�ed by the other systems described in this issue, the
rendering landscape is quite competitive and our studio continues to
invest in pushing the boundaries of image quality and performance.
To this end, we continually investigate new hardware architectures
(wider SIMD on CPUs, evolving GPU capabilities, etc.). We recently
have been pushing beyond Katana as the only rendering interface
within our studio and are looking to integrate the renderer more
directly into other applications to provide higher �delity rendering
or preview to other departments such as modeling, texture painting,
layout and animation. We have found that for dense environments
for example, a ray traced view can be faster than hardware acceler-
ated ones (some commercially available applications like Clarrise
or Keyshot have made the same observation).

In terms of image quality, we believe the biggest remaining chal-
lenge is overcoming the needs for the variance reduction “tricks”
described in section 4.7. Despite our implementation and occasional
use of bidirectional methods and MCMC techniques, their limi-
tations seem di�cult to overcome. We are encouraged by recent
advancements in path guiding [Bus and Boubekeur 2017; Müller
et al. 2017; Vorba et al. 2014] which suggest that path tracing may be
su�cient for accurate rendering of complex light paths, provided the
paths can be directed intelligently enough. Our initial experiments
in this area are quite promising.
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